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ABSTRACT

This report consists of drafts of Chapters 3-5
of a forthcoming book on “Picture Languages ” .
(A draft of Chapter 2, on digital topology, was
issued earlier this year as TR_542* .J The pre-
sent chapters deal with sequential and parallel
(= cellular) string and array acceptors.
Future chapters will cover other acceptor models,
as well as generator models (grammars). Comments
on the choice and treatment of the material are
invited.
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CHAPTER 3

STRING ACCEPTORS

3.1 Introduction

The purpose of this and the following chapters is to de-

fine various types of formal machines —- automata -- that can

recognize given classes of pictures. Before defining these

machines for two—dimensional arrays (i.e., digital pictures),

we devote this chapter to reviewing the analogous concepts in

one dimer.sion, where the machines recognize given classes of

strings or “tapes” .

In order to make the analogy between the one- and two-

dimensional cases more explicit , we have somewhat modified the

standard definitions of the one-dimensional machines; but our

definitions are readily equivalent to the standard ones. We

also present a collection of propositions and theorems about

one-dimensional machines; many of these are standard , while

others are given as preparation for presenting their two-

dimensional analogs. We give informal proofs of many of these

results , but occasionally we state them without proof and give

references to standard texts where proofs can be found.

The computational models described in this chapter are

not all of equal utility ; some of them are potentially of

practical interest (e.g., bounded cellular automata), while

others are much less so. However , even the impractical models

are pedagogically useful , since they provide a standard frame-

work for breaking computations down into small steps.



3.2 Automata and acceptors

3.2.1 Transition functions and configurations

Informally , a (one—dimensional) automaton can be

thought of as a “bug” that, at any given time, is in one of a

set of states, and is located at a given position on a tape

that contains a sequence of symbols. The bug operates in a

sequence of discrete time steps, at each of which it

a) Reads the symbol in its current position ,

erases that symbol, and replaces it by a

(possibly) new one

b) Changes to a (possibly) new state

c) Moves to a neighboring position, or possibly

does not move.

In general, the new state that the bug goes into, the new

symbol that it writes, and the direction in which it moves all

depend on its current state, on the current symbol , and on the

direction in which the bug last moved. (The reason for making

them dependent on the direction of last movement will be ex-

plained later.) Thus the bug ’s behavior is described by a

transition function that maps (state, symbol, direction)

triples into (state, symbol, direction) triples. We call the
I bug deterministic if each triple maps into a unique triple;

otherwise , we call it nondeterministic, and we regard it as

mapping triples into sets of triples.

On a more formal level, an automaton M is defined

by specifying a triple (Q,V,6), where 

-~~~~~~~ -~~~~~~~~~~ 
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Q is the set of states

V is the set of symbols (“vocabulary ”)

5: QXVXA 2QxVxA (or -” QxVx~ , in the deterministic

case) is the transition function

A {L,R ,N} is the set of move directions(”left ”,

“right” , and “no move ”)

A tape is a mapping T: I V from the integers into the vocabu-

lary . A configuration of the automaton (and tape) is a quad-

ruple (q,d,i,T), where q is M ’ s current state , d is the direc-

tion in which M has just moved , i is an integer denoting M’s

position , and i is the current tape. The transition function

6 defines a mapping p between configurations in the following

way : Let ‘r~~V be the symbol in the ith position on T. Let

(q’ ,v ’ ,d’) be any triple in the image of (q,T1,d) under 6,

where d and d’ are directions in 6; in other words , suppose

that when M is in state q, reads symbol ‘ri, and has just moved

in direction d , one of the possibilities for its behavior is

that it rewrites ‘t
1 

as v ’, moves in direction d’ , and changes

to state q ’. Let r ’ be the tape that is identical to ‘t except

that has been changed to v’ (i.e., (T ’)~~ = v ’). Then the

configuration (q’ ,d’ ,i’ ,T ’) is a possible successor to (q,d ,i,i),

where

i’ = i—i , if d’= L

i, if d’= N

i+l, if d’= R

This formalism corresponds to the intuitive description of M

given in the first paragraph.

~b. -



3.2.2 Finiteness conditions

Up to now we have not imposed any restrictions on

the sizes of the state set Q, the vocabulary V 1 or the tape t.

From now on we shall require that

Q be a finite, nonempty set containing a special

“initial state” q0

V be a finite , nonempty set containing a special

“blank symbol” #

t be of the form * G * , where a is a finite , non-

null  string of non—#s

We shall also require that the initial position of the automa-

ton M be on a non—# symbol.

An M that satisfies these restrictions will be

called a Turing machine (TM). We shall also consider three

special types of TM’s:

a) #-p~’eserving: M neither creates nor destroys

—— in other words , for all (q’ ,v ’,d’)EcS (q,v ,d)

4 we have v = * if f. v ’

b) Tape-bounded: M “bounces off” *s, so that it

is essentially confined to the non—# portion

of its input tape. Specifically, we require

that if M has just moved in direction d and ‘

reads the symbol *, it must not rewrite the *

as anything else , and must move in direction

d’ = d~~ , where L ’ = R and R 1 L. (We

cannot have had dmN , since ini tially M is on

a non-O, and it is easily shown by induction

T I  
_ _ _ _ _  
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that whenever the move jus t  made is N , the

current symbol is not *.) Clearly tape-bounded

implies #—preserving . Note that if M is tape-

bounded , we can require ‘t to be of the form

*a# , since M never visits any other part of ‘t.

c) Finite_state*: M never rewrites any symbols —-

i.e., (q’,v ’,d’)€ã(q,v,d) implies v ’=v . (In

particular , such an N is #—preserving.)

The reason we required i transit.ion of

M to depend on the direction in which M has

just moved was to allow us to define tape-

boundedness as done here . If M’s current move

did not depend on the previous move ’s direc-

tion , there would be no way to guarantee

that M bounces off # 5 ;  M would not know

which way to move when it reads a *.
An alternative possibility for defining

tape-boundedness would be to introduce two

special “#“  symbols, Z and r, and have 9~’s

to the left of the non-i segment of the tape

and r ’ s to its right . We could then stipu-
late that whenever M reads an 9.. it moves

4 right , and whenever it reads an r it moves
l e f t .  This too would insure that M bounces
off the *~~. To generalize it to rectangular

arrays of non—*S in two dimensions (Section

4.3) we could introduce two further special

“ * “  symbols , t and b, at the top and bottom

*A better form would be “non-rewriting” , but we use “finite-
state” for historical reasons.

_ _
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of the non-#s , and require that whenever M

reads a t or b it moves down or up, respec-

tively. However , this approach does not gen-

eralize to arbitrary (non—rectangular) two—

dimensional arrays of non-#s (Section 4.4).

. 4...’,’ ~~~~~~~~~~ 
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3. 2. 3 Acceptors and their languages

We now in trod uce the notion of an automaton ’s

“acccpting ” its input tape . Formally, an ~~~~j~tor A is a

triple (M,q0,Q~~) , wher e M = (Q ,V ,6) is an automaton , q0LQ is

M’s ini tial state , and ~ A is a set of special “accept ing

states” . We say that A accepts the tape T
0 

from position i
0

jf rt peated application of M ’s trans it ion func tion , starting from

the configuration (q0,N ,i0,’t0
) , leads to a state set containing

some qtQ~~. It M is a Turing machine (and is *—preserving , tape-

bounded , or fin ite-state) , we call A a Turing acceptor (TA)

~~~~ eserving acc~~~~or ( #PA) , tape-bounded acceptor (TBA) , or

finite-s acceptor (FSA) .

As defined so far , acceptance depends on the initial

position i0 
of A. In the following propositions , we show that

th is position can be s tandardized without  chang ing the set of

tapes that are accepted . From now on , A is a TA with initial

tape #~ a#~~, and we shall  speak of A as accep ting the str in g a

if it accepts the tape * 0* -

Let L
L
(A) be the set of string s a that A accepts

when its initial position is at the left end of a. Let L
~~
(A)

be the set of a ’s that A accepts from some initial position ;

in other words , for all a
~~

L u(A), there exists an initial

f position (on a symbol in o) from which A accepts a. Let L 1~(A)

be the set of a ’s that A accepts from ~~~ initial position (on

any symbol in a).

Proposition 3.2.1. For any A there exists an A’ such that



L ( A ’) = L (A ’ )  = L
L
(A) . Mnreover , if A is #P , TB , or FS,

s~ is A’ , and if A is deterministic , so is A’ .

Proof: Given A , we define A’ as follows: From any initial

position on a, A’ moves leftward , not rewriting any symbols,

until it bounces off a *. As soon as this happens , A’ enters

the initial state of A , and thereafter its behavior is identi-

cal to that of A. Since a is not changed by the initial move-

ments of A’ , it is clear that A’ accepts , from every initial

position , exactly the same a ’s that A accepts from their left

ends. Moreover , the initial movements of A’ do not violate

#-preservation, tape-boundedness , or finite-stateness;

hence if A has any of these properties , so has A’ . Note also

that if A is deterministic , so is A’ .//

Proposition 3.2.2. For any A there exists an A” such that

LL (A”) = Lu (A). Moreover , if A is a #PA , TBA , or FSA , so is

A” .

Proof: Given A , we define A” as follows: From its initial

position at the left end of a , A” moves rightward , without re-

writing any symbols. When it reads any non-# symbol , A” can V

nondeterminist icall y enter the initial state of A , and there-

aft~r its behavior is identical to that of A. Since its

ini t ia l  behavior has no effect on a, it is clear that A”

accepts a iff. there exists an initial position from which A

accepts a. Clearly if A is a #PA , TPA , or FSA , so is A” , but

note that A” is nondeterministic even if A is deterministic.//

“-4
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Proposition 3.2.3. For any A there exists an A* such that

L
L

(A* ) = L~~( A ) . Moreover , if A is #P or TS, or is deter-

ministic , so is A* .

Proof: A* rewrites each (non-#) symbol x of a as a pair

(x,x). Starting at the left end of a , it then simulates A

on the first terms of these pairs, leaving the second terms

intact. If A rewrites a #, say as y, the simulation creates

a pair of the form (y,#). If the simulation accepts , A* scans

the non-#s and restores the pairs to their initial condition ,

i.e., it turns pairs of the form (y,#) into #s, and pairs of

the form (y,x) into (x ,x). A* then marks the left end of a,

and moves to the next symbol. From this starting point , it

again simulates A on the first terms of the pairs; if the

simulation accepts , it restores the pairs , finds the first

unmarked symbol, marks it , and moves to the next symbol. The

process described in the preceding sentence is repeated until

every symbo l is marked ; if this happens , A* accepts. Clearly

this will happen iff. a is in L
~~
(A) . Evidently A* is *P, TB,

or deterministic if A is. !!

Propositions 3.2.1-3 imply that in most cases it does

not matter whether we define acceptance from a standard position

(e.g., the left end) , from some position , or from all positions.

• [Instead of the left end , we can use any specific position,

provided A can locate that position ; e.g., we would not want

to use the iiidpoint of a as a starting point if A is FS, since

__________ ~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~ . . ,. ._. -



an FSA cannot locate midpoints (see, e.g., Section 3.3.2.).]

It will be convenient to use the left-end definition from

now on. The set LL
(A) will be called the language of A , and

will be denoted by L (A).
ft

— -~ — ---- ~~ —- --.-
~~~~~

-
~~~

--—-
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3.3 The lan3uage hi era~~f l~
A language accepted by a *PA , TBA , or FSA will be called

a #—preserv ing , tape-bounded , or f i n i t e—sta t e  language ( #PL ,

TBL, or FSL). The classes of all such languages will be denoted

by L #p 1 LTB, and LFS, respectively , and the class of all

languages accepted by TAs (i.e., the class of TLs) will be de-

noted by LT . We will  use the prefix D if the acceptors are

required to be determinist ic  —- e .g . ,  L DTB is the class of

languaqes accepted by deterministic TBAs.

Determinism is not a restriction in the case of arbitrary

TAs; it can be shown that 
~DT 

= LT. For the proof see [1,

pp. 95-6]; given an arbitrary TA, A , we can define a DTA, A’ ,

that systemat ically simu lates all possible sequences of transi-

tions of A , so tha t A’  accepts iff. A accepts.

It  can also be shown that  L DFS 
= LFS; the proof depends

on the fact  that any FSA can be simulated by a “one-way ” FSA

(see Section 3.3.3) that moves only from left to right. Given

any one-way FSA , A , we can define a one-way DFSA , A’ , whose

states are sets of the states of A , and that keeps track of

all the states that A could possibly be in at a given step

(see (1, pp. 31-21 for the details) - We define the accepting

states of A’ as those sets that contain accepting states of A

thus A ’ accepts i f f .  A does.

It is an open question whether LDTB = LTB (and similarly

for #P).

In the remainder of this section we establish some fur ther

inclusion relations among the classes of languages accepted by

the various types of TAs.

- . 
— :— . . .. - ,‘ , , . .



3.3.1 L~~ = L ~~

I n th is  section we show that TBA ’ s are as strong

as #PA ’s -- i.e., they accept the same class of languages. We

also show that tape-bounded FSA ’s are as strong as non-tape-

bounded FSA ’s. The basic idea of the proofs is that when a

#PA moves onto #s, its returning state(s) , if any , can be pre-

dicted by an acceptor that never leaves the non-#s.

Let A be a *PA having ~QI states, and suppose that
A enters the #s by moving off the right—hand end of a , while

in some state ptQ. If A is deterministic , then either it never

return s, or it returns in some specific state q~ Q; if A is non-

deterministic , it either never returns , or can return in any

of a set of states 
~~~~ 

We shall show that if A returns at

all , i t  does so without  ever getting far ther  away than 1Q 1 2

from a; ~nd in fact , if A can return in state q, it can return

in that  state without  getting far ther  than 1Q 1 2 away from a.
Let p be a legal pa th ( i . e . ,  a sequence of possible moves

and state changes of A) on the #s that causes A to return to

13 in state q. Suppose that the farthest p gets away from a is

n 1Q 1
2+1, where n is as small as possible for any such p,

and where the number of times that p gets n away from a is

also as small as possible. Thus p passes through the n #s to

the right of a , which we shall call *l~~ ••l #fl~ 
Suppose that

p requires N time steps, which we shall denote by tl~ • •~~l
tN•

It is easily seen that there must exist two time steps

t . < t’ at each of which A is on a , and between which it is1

— •
•

• .



to the right of *1 and visits *n at least once. Similarly ,

during the time interval (t
~ 

,t! ) ,  there must exist two time
1 ~1

steps t. < t! at which A is on #2~ 
and between which it is to

i
2 

1~

the right of *2 and visits #~ at least once. Continuing this

argument , we obtain a nested set of time step pairs

t- ~t. < . ‘ .  t. <t. <‘t ! ~t! <•••~ t~ < t~11 i
2 

1n—2 i~ _j 1n—l 1n—2 12 il

such that, for all l~ j~ n—l , A is on *~ at t~~ and t~ , is to

the right of between these times, and visits at least

once during that period .

Let q.,q ’ be the states of A at time steps ~~~~~~j  3 3
of p , l~ -i<n—l. Since n—i > 1Q 1 2 , two of the state pairs (q~ ,q~)
must be the same, say (q~ ,q~) = (q

~~~~~q~~~ ) f  where j<k. For any

time steps t and t’, let p (<t) denote the part of p prior to

t, let p(>t’) denote the part subsequent to t’, and let p (t,t’)

denote the part between t and t’ (inclusive) . Now consider the

path p ’ obtained by concatenating p(<t. ), p(t. ,t’ ) ,  and1k 1’k
p(>t ). Since q. = q~ , 

~~ 
= q~ , and A stays to the right of

3 3 3
its starting point between these two states, we see that p ’ is

a legal path for A on the *‘s, and it causes A to return to a

in state q after leaving it in state p. Moreover, during the

part of p ’ corresponding to p(t. ,t’ ), A no longer reaches1k ~k

in fact, it only gets (n-k) to the right of *~ where

j+(n—k)<n since j’<k. Thus p ’ is a legal path that either does

not get as far as 
~~ 

or gets there fewer times than p did; and

this contradicts our choice of p.

.4.

_ _ _ _ _  
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0
We have thus shown that if there exists any legal

path for A that causes it to return to a in state q after

leaving it in state p, then there must exist such a path

that never gets farther than IQ t 2+l from a. This observation

allows us to prove

Theorem 3.3.1. L
*p 

= LTB.

Proof: Clearly LTB ~ 
L#p, since TBAs are *PAs. Hence we need

only show that for any #PA , A , there exists a TBA , A ’, ~~at

accepts e~-actly the same strings as A. Specifically , we de-

fine A’ to simulate A as long as A remains on a. If A leaves

a , say in state p, then by the above discussion , A’ can deter-

mine whether A ever returns to a in any given state q by in-

ternally simulating the behavior of A on the IQt
2
+l*s

adjacent to a. [Paths which take A farther than IQ~
2÷l away

from a can be ignored , since all return possibilities for A

occur on paths that stay within ~QI
2+l of a, and if there are

no such paths , A never retui -is. If A accepts without returning

to a , we can replace it by an A* that simulates it until it

accepts , then moves back to a and accepts ; thus A* accepts

exactly the same strings as A , but never accepts while on *5 ,

and so can be simulated by A’ .] Since the #PA (A or A*) need

only be simulated on a string of #s of bounded length, its

simulation by A’ requires only a bounded amount of internal

memory , and can be carried out every time A’ bounces off a #.

Thus A’ can go into a non—accepting , absorbing state if A can

never return ; and into a returning state of A , otherwise, af ter



which A’ continues the simulation of A (unless acceptance has

occurred). Clearly A’ accepts iff. A accepts. !!

In the proof of Theorem 3.3.1 , if A is finite—state , so

is A’ ; we thus have

Theorem 3.3.2. LTBFS = LFS .//

In the deterministic case , we can give a somewhat diff-

erent proof of Theorems 3.3.1-2, based on the fact that when a

deterministic #—preserving automaton moves onto #s, it suffices

to simulate its behavior for O(~ Q~
2) time steps (rather than

out to distance Q~
2). As we shall see in Chapter 4, this

deterministic proof generalizes , in part, to two dimensions;

we therefore present it here .

Proposition 3.3. 3. Let A be a deterministic FSA that has IQ I

states, and let the input tape of A be constant, say z~ for

some ztV* . Then after less than IQ I steps, the sequence of

states of A becomes periodic with period p ~ ~Q J .

Proof: No matter how A moves, it always reads the same symbo l

z; hence its next state depends only on its current state.

Since A has only IQ I states, some state must occur twice

during the first IQ I steps of A’s operation. Suppose that the

*In this proposition we temporarily relax the requirement that
the input tape must be of the form #~a#~ .

- 
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states at steps i and i+p are the same, where O~ i<i+p~ IQ I

Then the sequence of states at steps i , i+l , . .  ., i+p— 1 must be

repeated at steps i+p, i+p+l,...,i+2p—1, and the same sequence

must then occur at steps i+kp , i+kp+l,...,i+(k+l)p-l , for any

k.-l , so that after time i—l < 
~~ ,A’ s behavior is periodic

with period (at most) p ~ IQL!!

Coro11ar~~~~~~~ . Let A be a determinsitic #PA that has 1Q~
states. Then the behavior of A while it is on the * part of its

input tape becomes periodic , with period ~ jQ~
, after <

steps .

Proof: Since A cannot rewrite #s, we can regard it as an E’SA

as long as it stays on #s.!/

Proposition 3.3.5. Let A be as in Corollary 3.3 4, and suppose

that A moves onto the # part of its tape . Then ei ther A returns

to the non—*s within )Q~
2 

+ ~~ steps, or it never returns .

Proof: Suppose A leaves the non-* string a at its right end .

If it returns during the non—periodic part of its behavior

(see Corollary 3.3.4), it has returned within 1Q~ steps, and
we are done. Otherwise, let its position at the beginning of

V
its periodic behavior be r symbols to the right of a; clearly

o < r ~ ~~~ During a single period of its periodic be—

havior, let A’ s maximum leftward excursion from its starting

position (at the beginning of the period ) be s symbols , and

let its net leftward excursion at the end of the period be t

symbols , where evidently s and t each ~ f Q~. If s~r, then A W 

- ~~‘± 
-. - ---~~~~~~ 
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returns to the non-*s during its first period , i.e., within

time S 2 1Q 1 . If not, and if t’O, A never re turn s to the non-

*s. But if t?O , A is closer to the non-#’s at the end of each

period than it was at the beginning , so that eventually it

must return . In fact, it returns within at most k periods,

where r-kt~s; this implies that k is at most ~~~~~~~~~ 
~ r ~ 10 1 .

Thus the total time to return is at most IQ I (the nonperiodic

behavior) + 10 1
2 (at most I Q I  period s , each of length ~

Corollary 3.3.4 and Proposition 3.3.5 provide us with a

proof that LD#p = LDTB and that LDFS 
= LDTBFS . , for

any D#PA ,A , we can define a DTBA,A’ , that simulates A on a.

When A leaves a, A’ can immediately determine , by simulating

a bounded number of t ransi t ions of A , whether or not A ever

return s, and if so in what state, or whether A accepts with-

out returning ; A’ can then continue the simulation of A , or

can accept. Clearly A’ accepts iff. A does, and if A is

finite—state , so is A’.



3.3.2 L — L  .-~~LT~~ TB~~ FS -
‘

It is well known that LT ~ 
LTB ; in fact , one can

prove a much more general proper inclusion result about a hier-

archy of tape bounds (see [1 , p. 149)). Thus we see that in-

ability to create or destroy #s reduces the power of a TA. On

the other hand , if we only prohibit creating #s ,a TA’s power is

not reduced . In fact, given any TA , A , we can define an A’

that simulates A , except that whenever A creates a # ,  A’ creates

a special symbol k , not in the vocabulary of A. For every

transition of A when it reads a # ,  A’ has both that transition

and another one with the # replaced by 4 . Evidently (by in-

duction on the number of elapsed steps) the configurations of

A and A’ are the same except that for A’ some #s have become

s. Thus the sequences of states (or state sets) of A and A’

are the same, so that A’ accepts if f. A accepts.

We can also show that LDTB LFS. For example,

cci sider the set of strings a of the form xnyn. A DTBA can

accept this set by moving back and forth , alternately erasing

X ’ S and y’s (changing them to z’s, say) at the ends of the

string, and verifying that the last y is erased just after the

last x 1j erased . On the other hand , suppose this set were

accepted by an FSA , call it A. We can assume without loss of

generality that A starts at the left end of a and accepts at

the right end (given any A , simulate it by an A’ that, as

soon as A accepts, moves to the right end and then accepts).

Thus there is a last step at which A crosses the boundary be-

_ _ _



tweert the x ’s and the y’S. At this step, A is in one of Q

possible states, or 2~~~ possible sets of states. But since

there are infinitely many possible n’s, the state (set) of A

must be the same for two of them , say n1 and n2. Since A

never returns to the x ’s, its further states do not depend on
n1 n1the numbers of x ’s; hence if A accepts x y , it must also

n2accept x y , contradiction.

•
~1

I
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3.3.3 One-way acceptors

In this section we consider TAs that are allowed to move

only in one direction , say to the right . Since we have assumed

that a TA always starts out at the left end of its input string

a , such a “one—way ” TA (OWTA) sees all of a. Moreover , an

OWTA may as well accept as soon as it sees a #, since from then

on it will see nothing but #s, and can gain no further informa-

tion about a. (More precisely : let A be any OWTA , and let A’

simulate A uniti it sees a #. At that point , A’ can decide

whether A , starting in its current state and reading only #s ,

can ever enter an accepting state ; if so, A’ accepts , other-

wise not.) Note that our OWTA thus always accepts , if at all ,

after l a l steps.

For OWTAs , there is nc restriction in being deterministic ,

tape-bounded , or even finite-state . In fact , given any OWTA ,

A , we can def ine  a determinis t ic  OWTA , A’ , whose sta tes are

the sets of states of A , and show that  A ’  accepts 1ff. A does

(see the beginning of Section 3.3). The fact that a tape-

bounded OWTA can simulate an a rb i t r a ry  OWTA was pointed out in

the previous paragraph . Finally, to see that a finite—state

OWTA ( A ’ )  can s imulate an a rb i t ra ry  one (A ) , note that the

transitions of A cannot depend on the symbols that it writes,

since it can never go back to read these symbols. Thus if we

define A’ to be the same as A except that it never rewrites

any symbols, we see that the sequences of states of A and A’

as they scan a are the same , so that A’ accepts if f. A does.



P
It is well known that LOWFS L

FS
; for the proof see [1 ,

pp. 41-44]. Thus the class of languages accepted by one-way

acceptors of any type is just the class of finite-state

languages.

I
I



p 3.4 Cellular acceptors

Up to now we have considered automata thllt operate

sequentially by moving around on an input tape and reading

one symbol at a time. In this section we introduce a class

of parallel automata that operate on the entire tape simu l-

taneously. We shall show that these automata , when regarded

as acceptors , are exactly as strong as TBA ’s. On the other

hand , we shall show that they are generally much faster than

TBA ’s -- i.e., they can often accept in a much shorter time.

_ _ _ _ _ _ _ _ _  ‘~~~~ - —



3.4.1 Cellular automata and acceptors

Informally,  a cellular automaton is a string of

“bugs ” or “cells ” each of which , at any given time, is in some

state. The cells operate in a sequence of discrete time

steps , at each of which every cell reads the states of its

left and right neighbors , and changes to a (possibly) new

state. Thus, formal ly , a cellular automaton K is defined by

specif ying a pair (Q , 6), where Q is the set of states, and 6

is the transit ion function that maps triples of states into

sets of states (or into single states , if K is de terministic) ,

i . e . ,  5: Q3 
-~ (or -‘- Q). Here, for each cell c~K, 6 maps

the triple (state of left neighbor, state of c, state of

right neighbor) into the set of possible new states of C; in

the deterministic case, this set always consists of a single

element. A configuration of K is simply a mapping from the

integers into Q which specifies the state of each cEK .

We shall assume from now on that Q is finite, and

that there is a special state #~Q such that the initial con-

figuration of K is of the form #a~a*~
)
, where a is a f in ite ,

non-null string of non—#s. If, in addition , 6 is #-preserving

(i.e., #tä (q,r,s) implies r = # ,  and 6(q,#,s) = {*) for all

q,s in Q), we call K a bounded cellular automaton*. Note

that in the bounded case we may as well assume that the string

*Ag in Section 3.3.2, inability to create *s is not a restric-
tion on K. We shall assume hereafter that no K ever creates
*8.



— ~~~~~~~~~~~~~~~~~~~~~~~~~~~

of cells is f i n i t e , and has the form #a#, since the #s wil l

a1wa~~ ..en’ain #s.

We now introducr~ the notion of acceptance of an

input string (of states) by K. Formally, a cellular acceptor

(CA) ,C , is a t r iple  (K ,c 1,Q A ) , where K is a cellular automaton ,

~
.- Q is a set of initial states, and ~ Q is a set of

accepting states, with #~ Q1. If K is bounded , we call C a

bounded cellular acceptor (BCA). An input string is a con-

figuration whose image is in Q1, i.e., a string of the form

where a~iQ~~. We say that  C accepts this string (or, for

brevity : that C accepts a) if repeated application of K’s

transition function, starting from this configuration , can

lead to an “ accepting configurat ion” . Such a configurat ion

can be defined in a number of ways (compare Section 3.2.3):

a) Every c~C has a state in

b) Some c€C has a state in

c) A particular c0~C -- e.g., the one at the

l e f t  end of a -- has a state in

Let L 11 ( C) , L U ( C) # and LL
(C) be the sets of input strings that C

accepts according to these three definitions. ~Je wi l l  assume

here that accepting states cannot be destroyed , i.e., for all

q,stQ and all r
~
QA we have 6 (q, r,s) = {r}. We also assume

that accepting states cannot cause #s to be rewrit ten , i.e . ,

that if q or s is in we have 6(q,*,s) = { * ) .

Proposition 3.4.1. For any C there exists a C’ such that

LL(C) L1~(C). Moreover, if C is bounded or deterministic,

so is C’ .



Proof: The non-initial states of the cells in C’ are pairs

of the form V ,Q), where Q is a state of C. At the first

time step, c0 goes into state (l ,q ) ,  where q is its initial

state, and all other (non—#) cells go into states (O,q’),

where the q ’ are their initial states. (This can be done

since c0 is the only cell whose left neighbor is # . )  C’ then

simulates C by apply ing the transition function of C to the

second terms of its states. If a cell c that has a ~ as a

neighbor enters a state whose second term is in Q~ , c sends out

a signal (using the first terms of the states) that spreads

from cell to cell , provided that the cells involved have states

whose second terms are in If a0 receives this signal

from both sides , it accepts. Clearly this can only happen

if the initial string was in L 1~(C). Note that this proof de-

pends on our requirements that accepting states are never re-

written and cannot cause #s to be rewritten. If not for the

first requirement , c0 could never discover that, at a given

time step, every non-* cell happens to be in a state; and

if not for the second , the signals from c0 might never catch

up with  the (receding) #s. We have also made use of our

assumption that C never creates #s; otherwise the signals

could never know that they have seen all of the non—* cells. !!

Proposition 3.4.2. For every C there exists a C” such tha t

LL(C) L U (C) . Moreover , if C is bounded or deterministic ,

~~ is C” .

iuI~ - - ~ .
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Proo f :  We use pairs for the states of C” , as in the proof of

P ropos i t ion  3 . 4 . 1 , and c0 marks i tself uni quely at the f i r s t

t i me step. C” then simulates C using the second terms. If

any cell’ s second term is in 0A’ that cell sends out signals

(using the first terms) to the left and right; the propagation

of these signals does not depend on the second terms. If a

signal reaches a0, it accepts. Clearly this can only happen

if t:~e initial string was in

Proposit ion 3 . 4 . 3 .  For any C” there exists a C such that

Moreover , if C” is bounded or deterministic ,

so is C.

Proof: We again use pairs for the states of C, and c0 marks

itself uniquely (with first term 1) at the first step. More-

over , we define the accepting states of C as the pairs of

the form (l,q), where q€Q~ ; pairs whose first terms are 0

are never accepting states. C then simulates C” on the

second terms of its state pairs. The only cell of C that

can ever enter an accepting state is C0
; thus Lu (C) is

t r iv i a l l y  jus t  L L (C”) . !!

Proposition 3.4.4. For any C’ there exists a C such that

L~~(C) = LL(C’), and if C’ is bounded or deterministic , so is C.

Proof: We first define an automaton ~~~~
‘ that simulates C’

at o&~-nu~~ered time steps and whose states do not change at

even-nuMbered steps. This is done using pairs of the form (~~,q)

~ 

~~~~~~~~ :
-
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propagation reaches that cell. Since the simulation of C’ is

quiescent at even-numbered time steps , the propagation must

even tu a l l y catch up w it h  it (even if C’ is g r o w i n g ) .  Thus it

is clear that if the simulation of ~~~
‘ accepts at c0,  then

every cell of C accepts , and conversely, so that

L (C) = LL (
~~

’) = L
L
(C’). Note that if C’ is bounded or deter-

ministic , so is C./!

Prepositions 3.4.1-4 show that, in all cases, the

classes of lang uages accepted by ever y cell , by some cell ,

and by a specific cell are the same . [Instead of the cell

at the left end , we could use any cell that can uniquely

identify and mark itself at the start of the processing.]

We shall use the left-end definition of acceptance from now

on, and we shall always assume that c0 is uniquely marked .

The set LL(C) will be called the language of C, and will

be denoted from now on by L(C) . Note that L(C) can contain

strings of any length , depending on how many cells of C were

in i t ia l ly  in non—* states. (C is still considered to be the

same CA , no matter what the length of a may be, as long as C

has the same transition function.] The class of all languages

accepted by (D) (B)CA ’s will be denoted by L CD) (B)C.



fo r the states of ~~~~
‘
, where ~ = 0 or 1 and q is a state of C’ .

At time step 0 , each in i t ia l  state q of a cell of C’ is re-

placed by the state (l,q). Subsequently, we have

(0,q’) t ó ((l,q1),(l,q),(l ,q2)) iff. q ’ L6 (q1,q,q2), and

cS ((0,q 1) , (0,q) , (0,q2)) = {(l,q)} for all states q1,q,q2 of C’.

Clearly the sequence of configurationsof ~~~
‘ at odd-numbered

steps is the same as that of C’ (at all steps) with (l,q) ‘ S

replacing q ’s. Thus if we define the accepting states of ~~~~
‘

as the states (l,q) for which qLQ~ is an accepting state of C’ ,

it is evident that the language of ~~~~
‘
, by any definition of

acceptance , is the same as that of C’ . Clearly if C’ is

bounded or deterministic , so is ~~~
‘ .

We now define C to have as non—initial states pairs of

the form ~~~~~ where q is a state of ~~~~
‘ , and where c0 is

uniquely marked , as in the previous proposition (E~=O except

for c0, which has ~=l). C simulates C’ on the second terms of

the pairs. We define the accepting states of C .s all st~ttes

of the form (2,q) , for any accepting state q of (‘ . If

enters a state of the form (l,q) with q an accepting state of

~~~~
‘ , it immediately changes to state (2,q) , irrespective of its

neighbors ’ states. The states whose first terms are 2 then

propagate , e.g., if any neighbor o.~ cell c has state (2,q),

then the next sLate  of c is (2,q), irrespective of its own

current state or its other neighbor ’s state. States whose

first terms are 2 cannot enter into any other transitions , so
that the simulation of ~~‘ stops at a given cell as soon as the



The assumptions that accepting states cannot be destroyed ,

and cannot cause #s to be rewritten , used in the proof of

Proposition 3.4.1, can be eliminated , but at the cost of making

the simulation very slow. The basic idea is as follows:

a) The simulation of C by C’ proceeds one st~n at ~ time .

b) After each step, the simulation stops , and a signal

is initiated from the ends of C that spreads through

accepting states. If the signal reaches the distin-

guished cell c0 from both sides , c0 
accepts; this can

only happen if , at that step of the simulation , all

non-# cells of C are in accepting states.

C) If a nonaccepting cell is found , the signal is modi-

fied to indicate this. When the modified signal

reaches c0, it initiates a synchronization process

that causes every non-# cell of C’ to change state in

a special way simultaneously. When this happens , an-

other step of the simulation of C is performed .

The synchronization is necessary to insure that every non-*

cell of C’ does its step of the C simulation at the same time.

In order to simulate C one step at a time , we use pairs

of the form (c,q) as states , where q is a state of C. For each

- I transition q ’ t 6(q1,q,q2) of C , we have a corresponding

transition (0,q’) ~ 6(q1,q,q2) of the simulation . Thus

initially, the first step of C is simulated , but the simulation

stops at that point, since 6 does not apply to pairs whose

f i r s t  terms are 0. We then carry out the signal propagation



and synchronization steps, as described immediately below ,

using the first terms (c) of the states. At the end of this

process , the cells simultaneously change into the states which

are the second terms of their pairs (i.e., (L ,q) ÷ q for all L ) ,

so that the next step of the C simulation can take place

simultaneously at every cell. This step turns the cells ’

states back into pairs (0,q ’), so that the simulation of C stops

again until another signal propagation and synchronization has

been performed . This process is repeated until the signal in-

forms c0 that all non-# cells of the simulation are in accept-

ing states (second terms in 
~~~~ 

c0 can then accept.

The signal propagation process is straightforward : If a

cell c has a # neighbor and is in a state of the form (O,q),

where then c goes into state (l,q); while if c goes

into state (2,q) . Subsequently, any cell c whose state is

(0 ,q 1) and which has a neighbor in state (2 ,q 2 ) goes into state

(2,q1 ); while if c has a neighbor in state (l ,q2), then if

c goes into state (l,q1), while if c goes into

state (2 ,q1). The distinguished cell c0 is an exception : as

long as either of its neighbors is in a state with first term

0, it does not change state. If both of its neighbors are in

states with first term 1, and its own state is (O,q) with qtzQ~ l

it goes into state q (and thereby accepts). If one or both of

its neighbors are in states with first term 2, or its own state

is (O,q) with ~~~~~ it goes into state (3,q), which initiates

the synchronization process to be described next.

I
LL
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Finally, the synchronization process operates as follows .

Assume for simplicity that the distinguished cell a0 is at the

left end of the string a of non-#s; if it is not, it can send

a signal to the left end , which then acts as an initiator for

the synchronization process. (See [2] for a synchronization

construction that is somewhat faster and can proceed directly

from an arbitrary initiation point.)

The left end sends two signals rightward , one of which

travels three times as fast as the other; these signals are

represented by special values of the first terms of the state

pairs , say f and s. To transmit the fast signal , a cell whose

left neighbor is # or f (we ignore the second terms from now

on) becomes f, while an f becomes 0 at the next time step. To

transmit the slow signals , a cell whose left neighbor is # or

s becomes s” ; an s” becomes an s’ , an s’ becomes an s, and an

s becomes 0 at the next time step. Thus the slow signal

makes one move rightward at every third time step. The left

end itself (3) change to 0 as soon as it has initiated the

signals, so that the signals are only sent one.

When the f signal reaches the right end of a , it is trans-

formed into a left-moving fast signal f’ : A cell with £ as

its left neighbor and * as its right becomes f’ ; a cell whose

right neighbor is f’ becomes f’ ,and f’becomes 0 at the next

time step. The fast signal moves leftward until it meets the

slow signal at the middle of a. Specifically, if la l  = 2k+l

is odd , then f’ and s” would both reach the center cell (k+l)

~—
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at time step 3k. Thus at step 3k-l , s is at cell k and f’ at

cell k+2, so that cell k+l has s on its left and f’ on its

right. When this happens , we give cell k+l the value x.

Similarly, if ~~ = 2k is even , f’ reaches cell k-fl at step 3k—2 ,

and s” reaches k at step 3k-3; thus at step 3k-2 , s’ ani f’

are adjacent at cells k and k+l. When this happens , we give

both of these cells the value x. Thus when the signals meet

we have 0’s at all cells of a except the midpoint(s) , where we

have x(’s).

To illustrate the signal propagation process , we give two

examples , for the cases lo l  5 and 6.

____ l a l  = 5 (k=2) a l = 6 (k=3)

0 f/s” — — — — f!s” 

1 s’ f — - — s’f - — — —

2 s — f — —  s — f — — —

3 — sn — f —

4 — 5 ’ — — f ’ — s ’—— f —
5 — s — f ’ — — s — — — f ’

6 — — x — —

7 — — s ’f’ ——
8 - - x x — —

We now carry out an analogous process in which each half

of a is bisected. An x sends fast and slow signals leftward

and/or rightward through 0’s ; as soon as it has done so , it be-

comes a y ,  so that it does so once only . [If there are two

~~
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x ’s, the left one sends signals leftward and the right one

sends them rightward ; if there is only one x , it sends them

out on both sides.] The fast signals bounce off the ends of

a and meet the slow signals at the midpoints of their segments.

Note that the two segments have the same length (k+l, if

= 2k-Fl; k, if a = 2k), so that this happens at the same

time for both segments. When it happens, we again create x ’s;

o now has y(’s) at its midpoint(s) and x ’s at its quarter and

three—quarter points.

This process is repeated : the x ’s send out signals

through 0’s and become y ’s; the fast signals bounce off other

y ’s or off the ends of a, meet the slow signals , and create

x ’s at the segment midpoints. Again , all these x ’s are created

simultaneously . a now has y ’s at its mid and quarter points ,

and x ’s at its 1/8, 3!8, 5/8, and 7!8 points , and we repeat

the process again. The successive creations of x ’s are sum-

marized below for the cases l o l  = 11 and 12.

Step la l  = 11 Step a t  = 12

15 x 17 x x  

22 - - x — - y — — x - -  24 - - x - — y y - — x - -

24 x x y x x y x x y x x  26 x x y x x y y x x y x x

Eventual ly,  the y ’ s have only one or two 0’s between

them , so that when the signals meet , all the remaining 0’s

simultaneously turn into x ’s. Prior to this , no x or y ever

had x’s or y ’s on both sides of it; but now they all do. We



can now use a transition that turns all cells whose first terms

are x or y, and which have x ’s, y ’s, or *s on both sides , into

the ir second ter ms , so that another step of C can be simulated ;

note th at th is  t r a ns i t i o n  applies  s imul taneous ly  to every cell

in a.

- 
The number of time steps required to create an x at the

midpo i n t of a st r ing of length  2k+l is 3k+l , and the time to

creati x ’s at the midpoints of a string of length 2k is 3k.

At each repetition of this bisection process , the length of

th~ str i n gs be ing bisec ted is less than half that at the pre-

vious repetition (2k+l becomes k; 2k becomes k-l) . Thus the

total time required for the synciironization procedure is less

than ~Ia I [l + + . . . J  = 3~ a f (This does not count the time

needed for the chief cell to send a signal to the left end of

a to i n i t i a t e  the process , which is at most an addi tional 
~

time steps.) As mentioned earlier , a more comp lica ted

synchronization procedure can be defined [ 2 1 which requires

less than 2 (01 time steps; but in any case , the number of steps

required is of order I d .  Thus the s imula t ion  of a given C

using this method requires 0 (101 ) time steps for each step of

C, unlike the simulation in the proof of Proposition 3.4.1 ,

which is nearly as fast as C itself , except for the propagation

of the acceptance signal (which takes at most an additional at

time steps) .

I
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- 3.4.2 Equivalence to sequential acceptors

Theorem 3.4.5. Turing acceptors can simulate cellular accept-

ors.

Proof: Given a cellular acceptor C with transition function

- - 6, we define a Turing acceptor A that simulates C as follows:

The vocabulary of A is the state set of C. To simulate one

transition of C, A systematically scans a, the non—# part of

its tape, say from left to right. (Since #s are never

created , A can know when this scan is finished.) At each

step of this scan, A remembers (by storing them internally)

the tape symbols at the two previous positions ; in other

words , if A is at position i, it remembers the symbols q1 2
and q1 1  at positions i-2 and i-I. A then reads the symbol

at position i, and rewrites it as ~~~~~~~~~~~~~~ —— or ,

in the nondeterministic case, as some q in the set

A can then forget q
~ _2 . 

memorize and move on to

position i+l. Thus when A has reached the right end of a , say

at position n , it has written in each position i a possible

new state of the cell of C in position i—l. At this point , A

remembers q
~_1 

and and reads the * at the right of a , so

can compute a possible new state for the nth cell of C; it

stores this state internally. (If C is not a BCA , A can write

this state at position n+l , where there was formerly a #; and

A can also write (in appropriate positions) the new states of

the #s adjacent to a, if C would have changed these to non—#s.]

A now does a second scan , from right to left, and simulates the



next transition of a. This time, A can write the new states

in their proper positions, rather than shifted one over to the

right; e.g., in position n , A reads the current state of the

cell in position n-i , and since A already knows the current

states of the cells in positions n-fl (i.e., #) and n (stored

internally) , it can immediately write the new state for position

n in that position . Thus in each scan of a from left to right

or from right to left, which takes t a t time steps , A can simu-

late a complete (parallel) transition of C. A accepts iff.

its simulation of C accepts. Note that if C is deterministic ,

so is A , and if C is bounded , A is tape-bounded . Note also

that this simulation is the fastest possible, since A cannot

modify a tape symbol without visiting that position , and (a(

time steps are needed to visit all of a.//

Theorem 3.4.6. Cellular acceptors can simulate Turing

acceptors.

Proof: Given a Turing acceptor A with transition function 5 ,

we define a cellular acceptor C that simulates A as follows:

The non-initial state set of C is Vx(QI2{0})xDx(DU{O)) , where

V and Q are the vocabulary and state set of A , and D = {L ,R,N).

At the first time step, each cell c~C except c0 goes into a

state of the form (1~,0,N ,0), where ~tV is c ’s initial state.

Cell C
0 
goes into the state (ct ,q0,N ,d), where a~V is c0’s

initial state, q0 is A’ s initial state , and dED is a direction

in wh ich A can move when it initially reads c~ (i.e., d (a ,q0,N)

contains a triple whose third term is d). *

- - - - 
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At subsequent time steps, cells whose states and

neighbors’ states are of the form (~~,0,N ,0) do not change

state. Let c’ be a cell whose state is of the form (a ,q,d1,d2),

and let (ct’,q’,d2) be a triple in 6(a ,q,d1). Then

• a) If d2 
= N , the new state of c ’ is of the form

(a ’,q ’,N ,d’), where d ’~ D is the third term of some

triple in 6(cL ’,q’,N). In this case the neighbors of

c’ do not change state.

b) If d2 
= L, the new state of c’ is (c~’,0,N,0), and the

new state of the left neighbor of c’ is (~~,q’,L,d’),

where (~3,0,N,0) was its old state, and where d’ED is

the third term of some triple in 6(~~,q’,L). The

right neighbor of c’ does not change state.

c) If d2 = R , the situation is analogous to that in (b),

with R replacing L, and the roles of the left and

right neighbors interchanged .

Evidently, at any time step there is exactly one cell c’ whose

state has the form (cL ,q,d1,d2), and that cell is in a position

that A could have been in at the given time step.

[The term d2 is needed in the state of c’ so that its

neighbors know which of them, if any , is to become the new c’.

If c’ did not pick its own (simulated) direction of motion , and

if 6(c&,q,d1) contained triples with more than one thiro term,

then both neighbors of c ’ (or c ’ and one of its neighbors, or

all three) might try to be come the new c’. This problem does

not arise if A is deterministic , since in that case 6 (cz ,q, d1)

is always a singleton.]

- - - - - , 
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This process is repeated until the cell c ’ enters a state

(i ,q,d1,d2) for which i.e., for which A would have

accepted . At this point, c ’ sends an acceptance signal to

and c0 accepts as soon as it receives this signal. Thus C

accepts 1ff. A does. Note that if A is deterministic , so is

C, and if A is tape—bounded , we can regard C as bounded . [The

latter requires special cases in the simulation to handle the

steps in which ;~ bounces off #s without C having to actually

rewrite #s; the details will not be given here.] Note also

that this simulation is the fastest possible , since C requires

onlj one time step to simulate each time step of A. !!

Theorems 3.4.5—6 immediately imply

Theorem 3.4.7. L (D )C = L (D)T ; L (D)BC L (D)TB .//

Thus we have not created any new classes of languages by in-

troducing CA’s.

~~~~ ..:



3.4,3 Speed comparisons

As we have just seen, CAs can simulate TAs in real

time ; hence any language can be accepted by a (B)CA at least

as fast as it can be accepted by a T(B)A. (This ignores the

acceptance signal propagation process at the end of the simula-

tion , which requires at most al time steps.) On the other

ha nd , some languages can be accepted more quickly by (B)CAs

than by T(B)As. In this section we discuss comparative

acceptance speeds for sequential and parallel automata.

Let A (or C) be any acceptor, and suppose that

there exists a function f, taking natural numbers into natural

numbers, such that if A accepts the string a at all , it

accepts o in at most f( t a I ) time steps. We then say that A

accepts in time of order f. For example , if f is linear , we

say that A accepts in linear time; if f is the identity func-

tion, we say that A accepts in real time.

It is easily seen that, except in certain special cases ,

no A or C can accept in faster than real time. Indeed ,

suppose A accepts some string -r in in time steps, where m < I T t .

Since A cannot make more than m rightward moves in m time

steps, its state at time in cannot depend on the last IT t - rn

symbols of -r . Thus A accepts ~~~ input string whose first in

symbols are the same as those of T. Similarly, suppose C

accepts -r in m < 
~~~~~~ 

steps. The state of c~ at step m cannot

depend on the initial states of cells farther than m away from

C
0

; hence C accepts any input string whose f i rst in states are

the same as those of -r . We may thus conclude that for “ interest-

- - -,-



ing” languages L, the time required to accept any (‘LL must be

at least t a t .

There exist many simple languages which can , in fact , be

accepted in real time. For example , let L~- be the set of

strings in which a particular symbol x never appears . A deter—

ministic FSA ,A , that accepts L~ in real time can be defined

as follows: A moves rightward ; if it finds an x, it goes into

a non-accepting state and stops moving ; if it reaches a #

without finding an x , it accepts. Similarly, a BCA ,C, that

accepts L~ in real time is defined as follows : An acceptance

signal is propagated leftward from the right end of a; if it

meets an x , it stops; if it reaches c0 without meeting an x ,

C accepts.

On the other hand , there are languages for which parallel

acceptance is faster than sequential acceptance. An e:~ample

is the set Lsym consisting of symmetrical strings of odd

length made up of a’s and b’s, except for the center symbol ,

which is d. It can be shown [1 , p. 1451 tnat if A is any

sequential acceptor whose language is 
~~~~~ 

the time required

for A to accept the string of length 2n+1 is at least

of order n2. For example , we can define such an A informally

as follows:

a) A memorizes the leftmost symbol of a, erases it (i.e.,

rewrites it as some new symbol z), moves to the right

end of a and compares the rightmost symbol with the -
‘

memorized symbol. If they are different, A stops

moving and goes into a non-accepting state. If they

- I
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are the same, A erases the rightmost symbol , memorizes

the rightmost non-z symbol , move s to the left end of

a and compares the leftmost non-z symbol with the

memorized symbol , and so on.

b) This process is repeated until a stage is reached

where the symbol to be memorized is d rather than

• a or b. At this stage A checks that only z ’s remain

on the other side of the d , and if so, it accepts.

Readily, acceptance by this A (which is a deterministic TBA)

takes about (2n+l) + (2n-l) +.. .+ 1 = (n+l)2 time steps.

A deterministic BCA ,C, whose language is L5~~ 
can be de-

fined informally as follows:

a) An a or b that has the d as right neighbor changes

to w; one that has the d as left neighbor changes to

z. If the d has a as left neighbor and b as right

neighbor , or vie versa, it changes to e; otherwise ,

it remains d.

b) a’s and b’s can shift rightwarc through w ’s and left—

ward through z’s.

c) A z that has * as its right neighbor becomes an

acceptance signal x that can propagate leftward

• through w’s. If x reaches the d, it changes to a

new signal y that can propagate leftward through z’s.

Readily C accepts iff. its input string was in L5~~ (otherw ise

the d would change to e at some point, or there would be

excess i ’s or b ’s on one side of the d which did not change

to w ’s or z ’s, and the acceptance signal could not reach c0).



The time required for acceptance is about 3n , since it takes

n steps for  the f i r s t  z to reach the right end , n 5teps for x

to reach the d , and n steps for y to reach c0.

We can consider upper , as well as lower bounds on accep-

tance time. A nondeterministir’ acceptor can take arbitrarily

long to accept a given string, since it can make an unbounded

number of nondeterministic transitions into non—accepting

states before it finally makes one into an accepting state .

Si m i l a r l y , a non-(tape-)bounded acceptor can take arbitrarily

long to accept, since it can perform an arbitrarily long com-

putation before it accepts*. On the other hand , a TBA , if it

accepts a at all , must do so in less than l a+2 1 I Q I  ( V I  t a t time

steps. [Proof:  there are only l v i  l o t possible tapes , on

each of which the TBA can only be in 10+2 1 different positions

(including its positions when it bounces off *s) and in

~~~A
1 nonaccepting states. If one of these configurations

repeats, the configurations have become periodic and the TBA

can never accept.] Similarly, if a BCA accepts a at all , it

must do so in less than I Q I  t a t time steps. (Using Proposition

3. 3.5 , we can s imilarly give an upper bound on the number of

time steps within which a *PA must accept a if it ever does so.)

*Indeed , given any time bound f , we can design our acceptor to
first perform some operation that tak~s ]on ger than f (IaI )
time sters -— e.g., to compute f (Iai ) -- before accepting . 

_i ~~~~~~~~~~~~~~ - 
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In the remainder of this section we give several

additional efficient algorithms for acceptance by CA5 ; all of

these algorithms require time proportional to the string

length l o t .

a) Palindromes [3]: Let L be the set of symmetric strings

C = ~~~ where ~ is a non-null string of a’s and b’s (say),

and is the reveral of ~~ . To accept L, each cell of C

sends a signal i leftward and rightward if  its state is a ,

and a signal ~ lef tward and rightward if its state is b .

(These signals are erased when they reach the ends of the

string.) If a pai r of consecutive cells ever contain

different signals (a and ~ or ~ and a), it cannot be the

center pair of cells of a palindrome , and its cells mark

themselves appropriately . Concurrently , the leftmost and

rightmost cells send signals 2- and r rightward and left-

ward . These signals meet at the center pair of cells .

Evidently 0 is a palindrome i f f .  this pair is unmarked

when the 2- and r signals meet there. (No other pair can

remain unmarked , since for any other pair there is a *

(whose occurrence is signaled by 9 or r) located symrnetri—

cally to a non-#.) The 2- signal is then erased, and the

r signal becomes an acceptance or re jection signal (r’ or

r”) which continues on to the left-hand cell; this cell

then accepts or rejects , as appropriate .

b) Repetitions: Let L be the set of strings a = tow , where w

is a non-null string of (say) a’s and b’s. To accept L,

‘ - -4
a..
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the rightmost cell of C sends out a signal a or 13 left—

ward , depending on whether its state is a or b. When

this signal has passed it, the next-to-rightmost cell

sends out an ~* or 13 signal leftward; when both these

signals have passed it, the third-from-rightmost cell

sends out a n a or 13 ; and so on. Thus the right end of a

generates a string of leftward—moving a’s and 13’s repre-

senting the states of the cells in reverse order. Con-

currently , the left end of a sends out a signal 9 right-

ward ; this meets the string of a’s and 13’ s in the middle

of a. When they meet , the £ stops and becomes an 2- ’ .

As each a or 13 passes the 9’, it becomes an a’ or 13 ’.

When a cell in state a or b sees an a’ or 13’ , its state

is erased , and the a’ or 13 ’ becomes an x or y, depending

on whether or not it matched (a ’ matches a, 13’ matches

b). Evidently this process matches the signals from the

cells in the right half of a with the states of the

cells in the left half of a, rightmost first. If they

all match , a string of x ’s is created; otherwise , some

y ’s are also created. The cell a0 at the left end re-

ceives this string ; if it sees any y ’s, it rejects; if it

sees no y ’s, and the x ’s stop coming, it accepts.

c) Equal runs: Let L be the set of strings a of the form

(say) ~~~~~ where n~ l. To accept L, C sends sl ynals 2.

and r rightward and leftward from its ends. If 9 sees

- ‘ anything but a’s, it changes to 2.’; if r sees anything

----
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but  b’ s , i t  changes to r ’ . Whe n ~ and r meet , 9 is

erased , and r turns into r*, which continues leftward .

If c0 receives r*, it accepts; if it receives r ’ , it re-

jects .

~\cceptance of strings of the form a
nbnc~ is slight ly

more complicated [31. Here signals are sent rightward

and lef tward from the ends , and they are also sent right—

ward from ab pairs and leftward from bc pairs. If the

l e f t  end si gnal meets a bc signal at an ab boundary , and

these signals have seen only a ’s and only b ’s, respec-

tively, we know that a begins with ahbh. Similarly, if

the right end signal meets an ab signal at a bc boundary ,

and they have seen only c ’s and only b’s, respectively ,

a ends wi th bkck. The left and right end signals can

then continue until they meet; if they have seen only b’s

since meeting the bc and ab signals , we know that a is of

the form ahbh=kck. The left end signal can then be

erased , and the right end signal can continue to c0,

which then accepts (or rejects , if one of the conditions

failed to be met). We can similarly accept strings of

the form albjck, where j=i or j=k , by verifying that at

least one of the equality conditions is met.

d) Parenthesis strings [3]: Let L be the set of well-formed

parenthesis strings a (strings composed of several kinds

of parentheses can be treated analogously). To accept

L, each left parenthesis sends a signal a rightward , and

I 
_____________________________________________________________ ___________________
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each right parentheses sends a signal 13 leftward . The

right end of a also sends the signal r leftward . When an

meets a 13 , they cancel out. If a 13 reaches c0, it

rejects; this means that some initial segment of a had an

excess of right parentheses over left parentheses. If

an i meets r, it changes to r’, and if r ’ reaches a0, it

rejects; this means that some final segment of a had an

excess of left over right parentheses. If r reaches

it accepts.

e) Counting [4]: Let L be the set of strings of (say) a ’s

and b’s in which the numbers of a ’s and b’s are equal

(or there are more a’s than b’s, etc.). C can accept a

language of this type by counting the number of a ’s and

b’ s and comparing the counts.

To count a ’s, we shift the a ’s leftwa’d , and the

cells of C simulate a binary counter with least signifi-

cant bit at the left end . Specifically , the ith cell

contains two bits (a
~

,13
~
), representing sum and carry

bits , which are initially both 0. When an a reaches the

left end , it is erased , and we add 1 to a1 (i.e., if

we change it to 1; if ct1=l we change it to 0 and

change 
~l 

to 1). The carry bits propagate rightward

according to the following rules: whenever 13
~
=l , we

change it to 0 at the next time step. At the same time ,

if = 0, we change it to 1; if = 1, we change

it to 0 and change 13i+l to 1. It is easily seen that

_ _ _ _ _ _ _ _ _  _ _ _ _  
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after at most t a t steps ,.all the a ’s have been shifted

leftward and added into this counter; and after at most

an additional 1og2~ a ( steps , the carry from the last

addition has finished propagating .

To accept a if f. the numbers of a ’s and b’s are

equal, or unequal in a specified order , C counts the a’s

and b’s simultaneously (using two independent counters

Ca and Cb). When a signal from the right end of C has

reached the left end and returned to the right end , the

counting must be finished . A second signal can then be

sent out from the right end that compares the contents

of the two counters , most significant bit first. If

this signal finds that Ca and Cb match up to some point,

and at that point Ca has 1 but Cb has 0, we know there

are more a’s than b ’s; while if Ca and Cb match all the

way to the left end of a, we know that the numbers of a’s

and b ’s are equal. This entire process takes linear time ,

namely, 3 J a J time steps.

-

-
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3.5 Closure_properties

In this section we show that the classes of languages de-

fined in Section 3.3 are closed under various set-theoretic

anu geometric cperations .

Proposition 3.5.1. A finite intersection of TLs, TBLs , or FSLs

is a language of the same type.

Proof: Let A1,... ~
An be acceptors for the languages ~~~~~~~~~

of the given type. Define A as follows: it first simulates

A1; if the simulation accepts, it simulates A2; and so on , un-

til it finally accepts if all the simulations accept. For TLs

or TBL5, before carrying out the simulation we first replace

each symbol by a pair of identical symbols, and then perform

the simulation of A1 on the second terms of the pairs, leaving

the first terms intact; if A1 accepts, we restore the original

second terms (by setting them equal to the first terms) and

then simulate A2, and so on. Note that this construction pre-

serves determinism.//

Proposition 3.5.2. A finite union of TLs, TBLs, or FSLs is a

language of the same type.

Proof: Define A so it nondeterministically simulates one of

the A
~
s; thus A accepts if f. one of the A

~
s would have

accepted.!!

For TLs and FSL5, the nondeterministic nature of this proof

is unimportant, since determinism is no restriction (see the

beginning of Section 3.3). For TBLs, to handle the deter-

ministic case, we can use a dif ferent proof : Replace each

- - 
~~~~~~~ 
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symbol by an n-tuple of identical symbols , and then perform

simulat ions of all  the A1s simultaneously ,  us ing the ith term

of each n-tuple to record the symbol that A
~ 

would have read

at that position , and also to record the location of A1-. At

each step of the simulation , A scans the non-# part of the

tape, finds each A
~ 

and simulates its next move. A simulates

the states of the A
~
s internally, using n—tuplesof states. If

some simulation accepts , so does A. (Note that we can also

use this proof for TLs, based on the fact that any TA can be

simulated by a TA that never creates #s (Section 3.3.2), so

that scanning the non-# part of the tape is still possible.

We can also use n-tuples of states to simultaneously simulate

all the A .s in the FSA case; here we can use the fact that it

suffices to simulate one-way FSA ’s, so that we need not keep

track of their locations, since they all move in step.) The

same constructions can be used to prove Proposition 3.5.1, ex-

cept that A accepts iff. all the simulations accept.

The complement of an FSL is also an FSL. This again

follows from the fact that we need only consider one-way FSI-s;

given an OWFSA , A , that accepts L, we simulate it, and if it

has not accepted at the end of its scan , we accept , so that

evidently we accept exactly L. The complement of a TL is not

necessarily a TL; see [1 , p. 123]. It is not known whether

the complement of a TBL must be a TBL; see [1, p. 132].

Proposition 3.5.3. Any singleton {a} is an FSL.

Proof: Given 0= s1,...,s~ , we can define a one—way deter—

ministic FSA , A , that accepts a. We do this as follows: If A

- ‘
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is in its starting state q0 and reads s1, it goes into state

if it is in state q
~ 

and reads 5i+l’ it goes into

state ~~~~~~~~~ state is an accepting state. If A is in

any state q1(i�0) and reads any symbol other than sf41, it

goes into the non-accepting , absorbing state ~~~~~~ Clearly A

accepts iff. its input is a.!’!

Coroll~~y 3.5.4. Any finite set of strings is an FSL.

Proo f: Propositions 3.5.2-3.1/

Let L0 be the set of strings that contain a given sub-

string a0; then L0 is an FSL. Indeed , we can define a DFSA ,A ,

that scans a given s tr ing from le f t  to right , and whenever it

sees the initial symbol x of a~ , simulates an acceptor for {o~
}.

If this accepts , so does A; if not, A returns to that in-

stance of x (which can be located because it is bounded dis-

tance away) and resumes its scan. [It follows by the preceding

paragraph that the complement of L0, i.e., the set of strings

that fail to contain a given O
0~~ 

is also an FSL. In particular ,

the set of strings that contain or fail to contain a given

t symbol is an FSL.]

A subset of an FSL is not necessarily an FSL. For ex-

ample , the set of strings {x’y3Ii ,j~ l} is evidently an FSL.

(A one-way DFSA accepts it by staying in state q0 as long as

it reads x ’s; changing to state q1 when it reads a y ,  and re-

maining in q1 as long as it reads y ’s; and accepting if it

reaches the right end of a while in state q1.) On the other

hand , as we saw in Section 3.3.2, the subset (x~y~’1n~ l} of

-~~~- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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this language is not an FSL.

We now consider some geometric operations on languages.

For any string a , let a’~ denote the reversal of a, i.e., if

.an then a’
~
=an~ 

. .a1. For any language L, let

• LR= (~~
RtOL L~

; we call ~~ the reversal of L.

Proposition 3.5.5. The reversal of any TL,TBL, or FSL is

a language of the same type .

Proof: Given an acceptor A for L, we can define an acceptor

A’ for LR as follows : Starting at the end of an input string

a , A’ moves to the right end , and then proceeds to simulate

A with all move directions reversed , i.e., if A moves right,

A’ moves left, and vicr versa. Clearly the successive con-

figurations of A’ are exactly the rever~a1s of those of A ,

so that the simulation accepts ~~ iff. A accepts a. Note

that this construction preserves determinism , finite-

stateness , and tape-boundedness .1/

For any string a=a1.. ~~~ by a cyclic shift of a is

meant any string of the form ak+l.. .anal. . .a~ , for some

~~~~~ (Note that for k=n this is a itself.) For any

language L, by the cyclic closure L of L is meant the set of

all cyclic shifts of the strings in L.

Proposition 3.5.6. If L is a TL, TBL, or FSL, so is L.

Proof: We first consider the FSL case. Let A be a one-way

DFSA that accepts L. Define an A’ that starts at the left

end of the given string a in some state q of A , and moves

S.-’
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rightward . At each move , A’ computes two possible state

changes for A , one corresponding to the symbol it actually

sees, and the other corresponding to what would happen if A

saw a #.  If the latter possibility yields a non-accepting

state of A , it is ignored . If it yields an accepting state ,

A ’ continues with two simulations , the original one and a new

one in which A now enters its initial state q0. The new

simulation simply continues until the right end of a is

reached; but the original simulation continues to compute two

alternatives at each step , and to create another new simula-

tion whenever the # alternative yields an accepting state.

This may happen many times , but the number of simulations

that need be tracked is bounded , since A can only be in a

bounded number of states. Thus at any given stage , A’ is

tracking the original simulation (which may keep on branch-

ing) together with a set of new simulations (which do not

branch) . When A’ reaches the right end of a, if any one of

these new simulations is in the original state q, A’ accepts;
I

in fact, if this happens , a is a cyclic shift of a string a ’

in L, and the starting point of a ’ is a point where A’ began

that particular new simulation . If none of the new simula-

tions is in state q, A’ can return to the left end of a and

begin the process again with a new starting state q ’. If a

is in L, some starting state of A’ at the left end of L must

eventually lead to acceptance in this way. Note that this

construction preserves determinism; alternatively , we could

pick the star ting state , and the point where A’ switches to

I
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a new simulation , nondeterministically. Incidentally, we

could have started A’ at the left end simulating every state

of A , and have A’ keep track of a separate simulation for

each starting state.

Next, let L be a TBL , and let A be a TBA for L. We de-

fine A’ to move rightward until it marks some nondeterminis-

tically chosen point, and begins to simulate A , except that

a) Whenever the simulation tries to pass the marked

point from the left, or reaches the marked point

from the right, it behaves as though A had reached

a #.

b) Whenever the simulation reaches an end of the string ,

and moves onto a # ,  it ignores the # ,  moves to the

other end of the string , and behaves as if it had

moved onto that string endpoint.

Evidently the successive configurations of this simulation

(except while moving to another end of the string as in (b))

are essentially cyclic shifts of configurations of A on a

string in L that ends at the marked point. Thus the simula-

tion accepts if f. a is a cyclic shift of a string in L.

If L is a TL, we must modify the construction in the

preceding paragraph to allow simulation of rewriting #s.

Speci fically, we can modify (a) so that if the simulation

rewrites a *, A ’ shifts (say) the initial segment of a (up

to the marked point) one space to the left, s:,mbol by symbol,

thus creating a space just after the marked point A’ then

writes the desired symbol in that space, moves the mark to



that symbol , and resumes the simulation . [Alternatively , A’

can simply create a new copy of a in which the initial seg-

ment (up to the mark ) now follows the final segment , and can

then carry out the simulation on that copy.]! !

For any language L, let L+ denote the set of all concatena-

tions of strings in L , i.e., L+ = (01...an fn ’- l; o1tL, ~~~~~~

We shall call L+ the (concatenative) closure of L.

Proposition 3.5.7. If L is a TL, TBL, or FSL, so is Lt

Proof: In the FSL case, we start at the left end of a and

simulate a one-way DFSA ,A , for L, starting in its initial

state q0. At each point of a we compute two possible state

changes , as in the proof of Proposition 3.5.6. If the state

change corresponding to a * does not yield an accepting

state of A , wn ignore it; but if it does, we continue with

two simulations , the original one and a new one in which A

reenters its initial state q0. For both of these simulations ,

we compute two possible state changes at each point, and

whenever the change corresponding to a * yields an accepting

state of A , a new simulation branches off. This may happen

repeatedly, but the total number of simulations that need to

be tracked remains bounded by the state set size of A. When

A ’ reaches the r ight end of a and reads a # ,  if any of these

simula tions is in an accepting state , A ’ accepts. Evidently

this happens if f. there exists a segmentation of a into a con—

catenation of strings in L, where the breakpoints are just

those points at which the simulation had switched to q0.



Note that this is a deterministic construction; nondeter-

ministically, we could simply pick an arbitrary set of points

at which the simulation is in an accepting state , and switch

back to q0 at these points .

In the TBL case , we define A’ to nondeterministically

segment a by placing a set of marks on it, and then to

simulate an acceptor A for L successively on each of these

segments o ., treating the marks as endpoints of a
~ 

(see (a)

in the proof of Proposition 3.5.6). If each of these simu-

lations accepts , A’ accepts. Evidently this can happen iff.

In the TL case the proof is similar , except that if

the simulation needs to rewrite a # ,  A’ shifts the initial or

terminal part of a in order to create a space at the appro-

priate segmentation point , as in the proof of Proposition

3.5.6.!!

By th ’ concatenation of the languages L1,... ,Lk we mean

the set of strings L1.. .Lk = { O
l
” .0~~Ia jI~~.i ~~~~~~

Proposition 3.5.8. Any concatenation of TL’s, TBL ’s, or

FSL’ s is a language of the same type.

Proof: The proof in the FSL case is analogous to that of

Proposition 3.5.7, using one-way DFSA ’s A1,.. .,Ak for the

languages Ll,...,Lk. At each branching we both continue thc

current simulation (of the A1 that accepted when it read a

#) and begin a new simulation of A
~+1, 

starting in its

initial state; thus we only allow sequences of branchings

that are k long. At any stage, we may be simulating al l k



A’ s, and for each of them, we may be in many different

states , but the total number of cases to be tracked is still

bounded (by the sum of the state set sizes of

When we reach the right end of a , if a simulation of Ak is

in an accepting state , A’ accepts; evidently this happens

iff. aLL
1

.. .Lk. The proofs in the TBL and TL cases are just

like those in Proposition 3.5.7, except that we segment a

into exactly k parts , and simulate the appropriate acceptor

on each part .!!

I 
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CHAPTER 4

SEQUENTIAL ARRAY ACCEPTORS

4.1 Introduction

Array acceptors are two-dimensional analogs of the

automata studied in Chapter 3. Here the tape is an infinite

two-dimensional array of symbols, and we shall usually re-

quire that all but finitely many of these symbols are #s.

The non-#s may constitute a rectangular subarray , or we may

only require them to be a connected subarray (see Section

2.2); both of these restrictions are generalizations of

the requirement, in Section 3.2.2, that a one-dimensional

tape must be of the form #‘~a#~~, so that the non-#s constitute

a connected string . We will first study array acceptors in

the case of a rectangular subarray (Section 4.3), and will

then consider the generalization to an arbitrary connected

subarray (Section 4.4). The rectangular case is more realistic ,

since digital pictures are rectangular arrays, but the connected

- - - 

case poses some interesting research problems. Sequential

ae~ceptors will be treated in this chapter; cellular acceptors

will be studied in Chapter 5.

-I
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4.2 Arr~y autornata and acceptors

Informally, a two-dimensional automaton is a “bug ” that ,

at any given time, is in one of a set of states, and is

located at a given position on an array of symbols. Just as

in the one-dimensional case , the bug operates in a series of

discrete time steps , at each of which it

a) Reads the symbol in its current position , erases

that symbol , and replaces it by a (possibly) new one

b) Changes to a (possibly) new state

a) Moves to a neighboring position , or possibly does

not move.

Note that we could define “neighboring” here to mean one of

the four horizontal or vertical neighbors, or we could allow

it to include the four diagonal neighbors as well (see Section

2.2). For simplicity , we will always use the first of

these definitions in this chapter. Note that a diagonal

move can be accomplished by making one horizontal move

followed by one vertical move (or vice versa); thus an auto-

maton that is allowed to make diagonal moves can be simulated ,

at half the speed , by one that is allowed to make only hori-

zontal or vertical moves.

In general , the state that the bug goes into, the symbol

that it writes, and the direction in which it moves all depend

on its current state, on the current symbol , and on the direc—

tion in which it last moved (see Section 3.2). Thus the bug ’s

behavior is described , exactly as in the one—dimensional case,

1
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by a t ransit ion function that maps (state, symbol , direction)

triples into (state, symbol, direction) triples; the only

difference is that there are now five possible directions

(left , right , up, down , and no move), rather than three

(left, right , and no move). We call the bug deterministic

if each triple maps into a unique triple ; otherwise, we call

it nondeterministic, and we regard it as mapping triples

into sets of triples.

Formally, an array automaton M is a triple (Q,V,ó),

where Q,V ,6 are defined exactly as in the one-dimensional

case (Section 3.2.1), except that ~ = (L,R,U,D,N} (“left,”

“right,” “up,” “down ,” and “no move”). A tape is a mapping

T:IXI ’-V from the pairs of integers (=coordinates of array

points) into the vocabulary . A configuration is a quintriple

(q,d ,i,j,T), where q,d ,r are as in Section 3.1.1, and (i , j )

are the coordinates of M’s position. The mapping p between

configurations induced by the transition function 6 is de-

fined as follows: Let Ti)~~
V be the symbol in the (i,j)

position on -r , let ~~~~~~~~~~~~~~~~~~~~~ and let T ’=t except

that has been replaced by v ’; then (q’,d’ ,i’,j’,r ’)E

i.(q,d ,i,j, r), where

• (i’,j’) = (i—l,j) if d=L

(i+1,j) if d=R

(i,j—l) if d=D

(i,j+l) if d~U

(i,j) if d~N



As in Section 3.2.2, we shall require Q and V to be

finite, nonempty sets, where Q contains a special “initial

state” q0, and V contains a special “blank symbol” #. We

shall also assume that only a finite number of tape symbols

are non-#s, where *E~V. (Further restrictions on the set of

non-#s will be considered in a moment.) If these restrictions

hold, we call M a Turing machine (TM). If M cannot create

or destroy #s, we call it #-preserving (*P) ; if M “bounces

off” #s [i.e., (q’,v ’,d’)E6(q,#,d) implies v ’=# and d’=d~~ ,

where L =R,R 1=L,U 1=D,D 1=U], we call M tape-bounded (TB);

and if M never rewr ites any symbols, we call it finite-state

(FS). There need be no confusion with the one-dimensional

defini t ions, as long as we know which is meant.

As in Section 3.2.3 , we define an array acceptor as a

triple A= (Mfq 01Q~)~ where M is an array automaton , q0 is M’s

initial state, and is a set of “accepting states.” We

say that A accepts the tape T 0 
from position (i0,j0) if re-

peated application of M’s transition function , starting from

the configuration (q0,N,i09j01 t0), leads to a state set con-

taininq some qEQ~ . The special types of acceptors (Turing ,

IP, TB, FS) are also defined just as in Section 3.2.3. If

E is the (finite) set of non-*s in 
~~~~~~

, we may also speak of

A as accepting E.

In Chapter 3 we required that the initial tape t of a

Turing machine be of the form #Th*~ , where a is a finite ,

non—null string of non-#s. As pointed out in Section 4.1,

•~0~~~ ~~~~~~~~~~~~~~~~ 
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there are two possible generalization of this requirement to

two dimensions -- namely , we can require that the set ~ of

non-#s be rectangular in shape, or merely that ~ be connected .

In Section 4.3 we will assume that ~ is rectangular; we will

consider the non—rectangular case in Section 4.4.

Before we begin our study of rectangular array acceptors ,

we show that an acceptor can verify that its non-# input array

E (which we assume to be connected) is, in fact, rectangular.

Indeed , we show that a deterministic , tape-bounded , finite-

state array acceptor can do these things; thus all of the

stronger types can certainly do so.

Proposition 4.2.1. There exists a DTBFSA , A , that accepts

a connected array ~ of non-*s if f. ~ is rectangular.

Proof: A moves leftward until it bounces off a #,  then up-

ward until it again bounces off a #; if Y~ is rectangular ,

this puts A in the upper left corner of ~~~. A now operates

as follows:

a) Move down. If that point is #,  move back up and

continue with step (b). If not, move left and

check that a * is present. If it is not, reject;

if it is, move right and up, and continue with

step (b). (This verifies that the left border of

E is locally straight at its upper end.]



p

b) Move up. If that point is not # , reject; if it is

# , move back down , move right , and repe-~’t the process.

Continue until the rightward move hits a #.  [This

verifies that the top border of ~ is straight.] Move

back and continue with step (a).

C) Move down . If that point is #,  move back up and

continue with step (d). If not, move right and

check that a # is present. If if is not, reject;

if it is, move left and up, and continue with step

(e). [This verifies that the right border of E is

locally straight at its upper end.]

d) Move left, move down, and check that a * is present.

If it is not , reject; if it is, move back up and

repeat the process. Continue until the leftward

move hits a #.  [This verifies that the bottom border

of E is straight.] If this step is ever reached ,

accept.

e) Move left until a * is hit. Move down . If that

point is #, move back up and continue with step (f).

If not, move left and check that a * is present. If

it is not, reject; if it is, move righ’ and up, and

continue with step (g). [This verifies local

straightness of the left border.]

f) Move right , move down, and check that a * is present.

If it is not, reject; if it is , move back up and

A



repeat the process. Continue until the rightward

move hits a #. [This verifies that the bottom

border is straight.] If this stage is ever reached ,

accept.

g) Move right until a # is hit. Move down . If that

point is #, move back up and continue with step (d)

If not, move right and check that a * is present.

If it is not, reject; if it is, move left and up,

and continue with step (e). [This verifies local

straightness of the right border.]

It is easily seen that A accepts E iff. Z is rectangular.

Note also that in the process of accepting a rectangular ~~~,

A does a raster scan of E , row by row (alternately left—to-

right and right-to—left.//



4.3 Rectapq~lar array acceptors

4.3.1. Recta~~u1ar array languages

If ~ is rectangular , it is easy to show , just

as in Section 3.2.3 , that in most cases the set of E’ s

accepted by the acceptors of a given type is the same whether

we require acceptance from all initial positions, from any

initial position , or from some standardized initial position

such as the upper left-hand corner of Z. Specifically, given

an acceptor A , let L i1 (A),L~~
(A) , and Lc(A) be the sets of ~ ‘s

accepted by A from all positions , from some position , and

from the upper left corner of ~~~, respectively. Then we can

prove

Proposition 4.3.1. For any A there exists an A’ such that

n (A )_L
u (A )=LC (A); if A is *P , TB , or FS, or is determin-

istic , so is A’ .

Proof: The proof is analogous to that of Proposition 3.2.1.

From its initial position , A ’ moves leftward until it bounces

off a # , and then upward until it bounces off a #, which

puts it in the upper left corner of E; it then simulates A.,’!

Proposition 4.3.2. For any A there exists an A ” such that

Lc (A ”)=L u(A) ; if A is #P, TB, or FS, so is A” .

Proof: The proof is analogous to that of Proposition 3.2 2.

From its initial position in the upper left corner of ~~~, A”

moves nondeterministically rightward and/or downward , and at

any step (provided it is reading a non-# symbol), it can

— ~~~~~~~~~~~~~~~~ -——



begin to simulate A. [Alternatively, A” can do a systematic

scan of E (see the proof of Proposition 4.2.1), and at any

non-# step, can nondeterministically begin simulation of A.] !!

Proposition 4.3.3. For any A there exists an A* such that

Lc(A*) L 11(A*); if A is *P, TB, or deterministic , so is A* .

Proof: Here again the proof is analogous to that of Proposi-

tion 3.2.3: A* does a systematic scan of E; simulates A (on

first terms of pairs) starting from each point of the scan;

if the simulation accepts, A erases the traces of the simula-

tion, marks the starting point, moves on to the next (unmarked)

point of the scan, and repeats the process. !/*

By these propositions, it makes no difference, in most

cases, whether we define acceptance from a standard point such

as the upper-left corner (or any point that A can locate),

from all points, or from some point. We shall use the upper-

left-corner definition from now on. The set Lc(A) will be

called the language of A , and will be denoted by L(A).

[Incidentally , as we shall see in Section 4.4, Propositions

4.3.2 and 4.3.3 hold for arbitrary connected Es , but Proposition

4.3.1 must be modified for such Es.]

*If A is not #P, erasing the traces of the simulation may not
be trivial , since in the course of it, E may become non-
rectangular. However, in Section 4.4.1 we shall show that a
DTBA can in fact scan an arbitrary connected E.

It
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4.3.2. The lan~~age hierarchy

Just as Ln the one—dimensional case, a rect-

angular array language accepted by a (deterministic) #PA ,

TBA , or FSA will be called a (D)*PL , (D)TBL, OR (D)FSL,

respectively. The classes of all such languages will be

denoted by L (D)#p~ 
L (D)TB I or L (D)Fsl and the class of all

languages accepted by (deterministic) TA’s will be denoted

by L (D)T. In this section we will establish some relation-

ships among these classes of languages.

Determinism is not a restriction in the case of

arbitrary TA’s~ in other words, LDT=LT. This can be shown

in essentially the same way as in the one-dimensional case

(see Section 3.3): Given an arbitrary TA , A , we can construct

a DTA, A’ , that systematically simulates all possible sequences

of transitions of A , so that A’ accepts iff. A does. It is

an open question whether LDTB= LTB (and similarly for *P),

just as it is in one dimension.

In one dimension , we had LDFS=L FS, but this is

false in two dimensions. The proof of the following theorem

is based on [5]:

Theorem 4.3.4. LFS LDFS

Proof: Consider the set of square arrays E , having odd side

length, composed of 0 ’s and l’s. Note that a DFSA can recog-

nize whether or not an array has these properties. [It can

test for squareness by moving diagonally -- e.g., alternately

____- - 
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down and right , beginning at the upper left corner, and

verifying that it hits the bottom just at the lower right

corner. It can test oddness of side length by moving along

one side of the array and counting modulo 2; and it can

verify that the array consists of nothing but l’s and 0’s by

doing a raster scan.] We want to accept an array of the above

type iff. its center symbol is 1.

A nondeterministic FSA can do this as follows : Starting

at the upper left corner, move diagonally downward and to the

right. At some point, nondeterministically chosen, memorize

the symbol just read on the diagonal, and begin moving diagon-

ally downward and to the left. If this reaches the lower left

corner (i.e., it hits the bottom just at the corner), then

the memorized symbol was at the center point of the array ; if

it is 1, the FSA accepts. Evidently , acceptance occurs if f.

the center point is 1.

To prove that a DFSA cannot do it, we first consider the

behavior of such an FSA (call it A) relative to an rn-by-rn

block (i.e., subarray) of 0’s and l’s. A can enter the block

at any one of 4m-4 positions, and can be in any one of ~QI

states when it enters. (It can also have just moved in

either of two directions , if it enters at a corner; but this

does not appreciably affect our argument.) Similarly, A can

leave at 4m-4 places, in one of !QI states; or it can fa i l

to leave, but we shall ignore this for the moment. The



block thus defines a mapping from the 4(m—l) IQ I incoming

(position , state pairs) into the 4(m-l) (Q~ outgoing pairs .

There are [4 (m-l) tQ II
4 (m 1) IQ I such functions. On the other
2)hand , there are 2~m possible blocks, and for sufficiently

large m we have[4(m-l) 1Q 1]
4(m.~~ ~~ 24(m-l) jQ}log[4(m-l) Q I] < 2 (m2)

Thus there must be two different blocks B1 and B2 that give

rise to exactly the same mapping .

To complete the proof , suppose that we had an A that

could accept the arrays whose center points are l’s. We can

assume that A does its accepting in a standard position , say

at the lower right corner (given any A , we can simulate it

until it accepts , then move to that corner and accept). Let

(i , j )  be a position in which B1=l and 52=0 (or vice versa).

Construct an array E that contains B1 as a subarray , with its

(i ,j) point in the center of E1; the rest of E1 can be all

l’s (say). When A accepts E1, it starts and ends outside B1.

Hence A must also accept the array E2 obtained from E1 by

replacing 81 by 
8
2; but the center point of E2 is 0,

contradiction.//

In one dimension (Section 3.3.1), we saw that

L (D)#p = L (D)TB and L (D)TBFS = L (D)FS. We can show this in

two dimensions for deterministic acceptors; the nondetermin-

istic case is still open (see [6]).

Note first that Proposition 3.3.3 and Corollary

3.3.4 hold in two dimensions as well as in one: The behavior

- -
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p.
of a DFSA on a constant input tape becomes periodic after at

most IQ I steps (where IQ I is the number of states) , with

period at most IQ I , and the same is true for a D*PA while

it is on the * part of its tape. We can also use these re-

sults to prove a two-dimensional analog of Proposition 3.3.5:

Lemma 4.3.5. Let A be a D*PA that has QI states, and

suppose that A moves onto the * part of its tape, say from

the right edge of the non-# array E . Let c be the column

(of lxi) that contains this edge of E. Then either A returns

to c within 1Q 1
2 

+ IQ I steps, or else it never returns. !!

We can now prove

Theorem 4.3.6. LD#P = LDTB; 10F5 = L
DTBFS

.

Proof: Given any D*PA , A , we can construct a DTBA , A’ , that

simulates A as long as it remains on E. When A leaves E , it

must do so at one of the edges , and must enter one of the

regions N, E, W, or S (see the diagram below), say region E.

w e

NW N NEn n

W E

SW S SE

w e

Let n,s be the rows of lxi that contain the top and bottom

of E , and let e,w be the columns of lxi that contain the right

and left columns of E. Thus when A enters E, it does so from

column e.

- .f l  — — - -~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - 
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By Lemma 4.3.5, A ei ther never returns to e, or it

returns in at most ~QI
2 

+ I Q I  steps. In particular , if A

ever gets farther than 
~
- ((Q I 2+lQ I ) to the right of e, it can

never return to e (and hence can never return to E). Thus

A’ can remain on e, starting at the point where A left e,

and keep track of the state changes of A using its own

states, and of the left/right moves of A using an internal

- 1 2 -counter of capacity ~ (IQ } + Q 1 ) .  If this counter overflows

without A having returned to e, A’ can stop the simulation ,

since A will never return . (Acceptance by A without return-

ing will be discussed later.) At the same time, A’ can

simu late the up/down moves of A on the #s by moving up and

down on e. As long as A remains in E , A’ remains in E and

no problems arise. If A returns to e (so that the counter

becomes empty), A’ is guaranteed to be in the proper state

and at the point of e where A returns , and it can resume

simulating A on E.

- - Suppose that A’ leaves E, say by moving into NE. When

this happens , A’ crosses n , and A (simulating A’ on e) reaches

the northeast corner of E , where e and n intersect. At this

point, A’ can remain at the corner and simulate the up/down

moves of A using a second internal counter of capacity

~ (IQ) 2~ IQI ) . By the analog of Lemma 4.3.5, if this counter

ever overflows without A haying returned to n, A will never

return, and the simulation can stop. Thus as long as A

remains in NE and does not move too far away from E to return,

- •_.~~
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A’ can stay at the corner and simulate all the moves of A

using its two counters. If A leave NE , it must enter either

E or N, and A detects this by noting that one of the counters

is empty . If A enters E, the up/down counter is empty , and

A’ resumes simulating the up/down moves of A by moving up

and down on e, as before . Similarly , if A enters N , the left!

right counter is empty , and A’ now simulates the left/right

moves of A by moving left and right on n, as long as A remains

in N.

The procedure is analogous if A enters any of the other

* regions. Thus wherever A moves onto the *s , as long as it

remains close enough to E that return is still possible , A’

can simulate A in such a way that if A does return , A’ is in

the proper position and in the proper state to resume simu-

lating A on E.

If A accepts E without returning to it, this must happen

within IQ~ steps, since the behavior of A on the #s is periodic

with period at most IQ I . Thus this will always happen before

the counters of A’ have overflowed . If A’ detects the fact

that A has entered an accepting state, A’ can accept immediately ,

without continuing the simulation. Thus in any case, AT

accepts if f. A does, which proves the first part of the theorem.

Note finally that in our simulation of A by A ’ , if A is

FS, so is A’ , which proves the second part of the theorem.//

—-
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We can now also prove

Theorem 4.3.7. L (D)T 
_

~ ~~~~ LDTB LDFS

Proof: We know that these results are true in one dimension

(see Section 3.3.2). Let S be a set of strings that is in

L~ but not in (in one dimension). If we regard S as a

set of n—by—l arrays, then clearly no two-dimensional TBA

can accept 5, since this TBA remains on one row and can

thus be simulated by a one-dimensional TBA . On the other

hand , a two—dimensional (D)TA can accept S by simulating a

one-dimensional TA that accepts S.

Similarly, let S be a set of strings that is in LDTB

but not in LFS (in one dimension), and regard S as a set of

n-by-l arrays. If S were in LDFS in two dimensions, it

would be in 1
~DTBFS 

(Theorem 4.3.6), so that a two-dimensional

DTBFSA would accept it; but this DTBFSA could be simulated

by a one-dimensional DTBFSA, contradiction .!/

- I 
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4.3.3. Three-way acceptors

We can also define two-dimensional analogs of

the one-way acceptors treated in Section 3.3.3. Specifically,

let us require that A start at the upper left corner of its

input array , and allow A to move right, left, and down , but

not up. Such an A can still do a systematic scan of its

array, but it can no longer verify that the array is rectangular .

[In fact, A cannot even tell whether two consecutive rows have

the same length; if it verifies that they line up at the left

end , it can no longer do so at the right end.] We shall call

such an A a three-way acceptor (TWA).

Evidently, on an n-by-l array (confined to a

single row), a TWA of a given type (Turing, *P, TB, FS) has

the same power as a one-dimensional acceptor of the corres-

ponding type, and can be simulated by such an acceptor . (If

the TWA ever leaves that row, it can never return to it, so

reads nothing but #s from then on, and can be simulated by

a one-dimensional acceptor that remains on the row.) Thus

any proper inclusion that holds for the languages of one-

dimensional acceptors also holds for TWA languages.

On the other hand , on a 1-by-n array (confined

to a single column), a TWA has the same power as a one-

dimensional (D)FSA, by the same argument as in Section 3.3.3.

It follows that a (four-way) two-dimensional acceptor of any

type stronger than an FSA is strictly stronger than a three-

way acceptor of the corresponding type. This is also true

-I



for FSA ’s, as we see from

Proposition 4.3.8. L (D)FSA 
; 

L (D)TWFSA

Proof: Consider the set of n-by-2 (i.e., two-row) arrays,

say of 0’s and l’s; we want to accept such an array if f. the

two rows are identical . A DFSA can verify this by systemati-

cally checking that each symbol on the top row has an identical

symbol below it. On the other hand , a TWFSA , A , that has

QI states must leave the top row in one of IQ I states at

one of n positions. For a given top row p, let S~ be the set

of (state, position) pairs in which A leaves p. (If A is

deterministic , S~ is a singleton.] If the bottom row is p,

at least one such pair (q,i) must result in acceptance (after

A has examined the bottom row). Thus (q,i) cannot be in Sr,,
for any p ’~~p, so that each S~ contains a pair that is in no

other S~ . But there are only n IQ I pairs, and there are

different rows, so this is impossible. !!

We can also show, as in one dimension , that L (D)TW#p =

and L (D)TWFS = L (D)TWTBFS. In fact, let A be a

TW*PA, and let A’ be a TWTBA that simulates A on each row.

(On any given row, as long as A does not move down , A’ can

simulate it by the argument in Section 3.3.1.1 If A moves

down while on Z , A’ also moves down. Moreover , while simu-

lating the moves of A off E , A ’ can determine in what states

A can move down, and if the simulation enters such a state,

A’ can move down to the end of the row below and continue 

-
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the simulation . As long as A does not move below the bottom

row of E , A’ can still determine in what states A can return

to E , as in Section 3.3.1. If A does move below the bottom

row, A’ can stop the simulation and determine whether A can

accept while on #s. In this simulation , if A is deterministic

or finite—state , so is A’ .

On the other hand , nondeterministic TWFSAs are strictly

stronger than deterministic , and in fact, nondeterministic

TWTBAs are strictly stronger than deterministic~

Proposition 4.3.9. - ~~~~~~ L~~~ 5 LDTWTB.

Proof: Consider the set cf arrays of 0’s and l’s that contain

two vertically adjacent l’ s. A nondeterministic TWFSA can

accept this set by scanning its input array systematically,

and when reading a 1, nondeterininistically moving down and

accepting if it finds another 1; evidently it accepts iff.

there exists two vertically adjacent l’s. On the other hand ,

let A be a DTWTBA having IQ I states. Then A must leave the

top row of its input array at one of n positions and in one

of IQ I states. Since there are 2n different top rows, there

must exist two top rows R1,R2 that A leaves in the same state

and at the same point. Let j be a position in which R1 and

R2 differ; say R1 has a 1 in the jth pos~ tion , while has

a 0. Consider the two-row array whose top row is R1 or R2

and whose bottom row is all 0’s except for a 1 in the jth

position. Then if A accepts the first of these two—row

arrays , it also accepts the second.!! I--

91uI_
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4.4 Connected array acceptors

4.4.1. Traversal theorems

If E is an arbitrary connected array , the

dependence of acceptance on the initial position of the acceptor

becomes a more complicated problem; the difficulty is that

location of a standard initial position by the acceptor is no

longer so easy. In fact , it is not even obvious that an

acceptor from a given starting point can visit all of E ,

so that the acceptor may not even be able to reach the standard

position . We therefore begin this section by proving some

results about the ability of array automata of various types

to traverse their input arrays.

Proposition 4.4.1. There exists a DTA that, from any starting

point P on its input array E , can scan E completely and return

to P with all marks made on E in the course of the scan erased .

Proof: Starting at P, the DTA , A , moves in a rectangular

“spiral ,” e.g., in the sequence

16 15 14 13 12

17 4 3 2 11

18 5 P 1 10

19 6 7 8 9

j 
20 21 ...

and marks the points of the spiral , whether they are non-#

or # .  Moving in a spiral is accomplished as follows: At

_ _ _  _ _ _ _

_ _ _ _ _ _ _ _ _ _ _  

_  _ _  
__  
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any step, A is in a rightward , upward , leftward , or downward

moving state. When it is in a rightward moving state, at

every step it checks to see whether the point above it is

marked , and if so, moves right . If the point above it is

unmarked , it stays at that point and goes into an upward

moving state. The behavior of A while in the other three

types of states is analogous: when it is in an upward

(leftward, downward) moving state, it checks the point on

its left (below it, on its right) at each step ; if this point

is marked , it moves up (left, down) , but if not, it stays at

that point and goes into a leftward (downward , rightward)

moving state.

Since E is finite , there will eventually be a complete

turn of the spiral which finds only #s. A detects this event

using an internal counter that is initially set at 0 and can

count up to 5. Whenever A changes di rection and is at a # ,

it adds 1 to the counter , but resets the counter to 0 when-

ever it reads a non-#. Thus the counter reaches 5 if f. A

has changed direction four consecutive times without seeing

a non-*. At this point , the marked points form a rectangle

R that entirely contains E. (No point P’ of E can be outside

R, since there would have to be a path of non-*s between P’

and P, and this path would have to cross the border of R.)

Thus A has now seen all of E. If desired , A can now retrace

the spiral in reverse and erase all the marks (or at least

erase them from the non-#s , if A is not allowed to create #s).



When A finishes retracing the spiral, it has returned to P.//

Proposition 4.4.1 describes a relatively simple method

of scanning E that can be implemented by a DTA because of its

ability to move on #s and to mark them . A DTBA can also scan

its input array E , but it must use a more complicated method ,

as we shall next see.

Theorem 4.4.2. There exists a DTBA that, from any starting

point on its input array E, can scan E completely and return

to P with all marks made in the course of the scan erased .

Proof: The DTBA, A , can use a graph traversal algorithm to

scan E; see [ 7] for the graph version. A uses five marks,

u, v, x, y, and z, which are mutually exclusive but which do

not interfere with the original symbols of E. Initially, it

marks P ~- ith u, and then proceeds as follows:

a) If the current point Q has an unmarked non-# neighbor ,

mark Q with x and move to such a neighbor , say Q’ .

If not, go to step (b).

al) If Q’ has a neighbor marked u, mark Q’ with y,

move back to Q (it is the unique neighbor of Q’

marked x), mark Q with u , and return to step (a).

a2) If Q’ has no neighbor marked u, mark Q’ with z,

move back to Q, erase all y marks from neighbors

of Q, mark Q with u, move back to Q’ (it is the

unique neighbor of Q marked z), mark Q’ with u,

and return to step (a).

-
~~~~~~ 
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b) If Q has no unmarked non—# neighbor , erase all y

marks from neighbors of Q and mark Q with v.

bi) If Q has a neighbor marked u , go to such a

neighbor and return to step (a).

b2) If not, stop.

We observe first that step (b2) must be reached eventu-

ally. In fact, the algorithm cannot stay in step (a) in-

definitely , since at each pass through (a) a previously

unmarked point Q’ of E is marked either y or u , and this can

only happen finitely many times. Moreover , at each entry

into step (b) some point Q is marked v, and this can only

happen finitely many times.

Next we show that at each entry into step (a) the points

marked u form a path 
~~~~~~~~~ 

(k � 1) with Q1=P , ~k
=0’ and

such that the path does not cross or touch itself , i.e.,

is a neighbor of iff. j=i±l. This is clearly true at

the first entry into (a), since P was initially marked u and

there are as yet no other marks. Furthermore , if those

properties are true at a given entry into (a)  , they are still

true at the next entry . Indeed ,

al) If the next entry is via (al), the set of u ’s is

unchanged (Q was initially marked u, (a) changed

its mark to x , and (al) changed it back to u).

a2) If the next entry is via (a2), a new point Q’

marked u is added to the path; Q’ has no neighbor

marked u, other then Q after its x is changed back - j

_ _  -I—---- -
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to u, so the path still does not touch or cross

itself.

bl) If the next entry is via (bl), the mark on Q is

changed to v, and the new Q is a neighbor of Q

marked u (if any) ; by induction hypothesis , this

~~ 
~~~~~~~~~~~~ 

is unique, so the path has been shortened

by one point, and still does not touch or cross

itself.

Evidently (b2) can hold only if the path has length 1

since otherwise Q does have a neighbor marked

u; thus when the algorithm stops, the current point is P, and

there are no more points marked u.

Finally , we show that when the algorithm stops, every

point of E has been marked v. Note first that when it stops,

there can be no points marked x, y, z, or u, and there is at

least one point (P) marked v. Suppose there were an unmarked

poir.t; let Q be such a point whose distance form P, as

measured by the length of a shortest path in E from P to Q,

is as small as possible. Thus Q has a neighbor Q’ (the pre-

vious point on the path) that is closer to P than Q, so that

Q’ must be marked v. Let Q” be the neighbor of Q that last

got marked v by the algorithm. By (b), just before Q” was

marked v it had no unmarked neighbors. Since Q cannot have

been marked u (u’s must eventually be changed to v ’s), it

must have been marked y at that time. But by Cal), for Q

to have been marked y it must have had a neighbor Q* other

~~1



than the current node (Q”) that is marked u. Thus when Q”

was marked v, Q still had a neighbor Q* marked u. This u

eventually was changed to v by the algorithm , so that Q” was

not the last neighbor of Q to be marked v, contradiction.

The foregoing discussion shows that the algorithm ,

starting at P on an unmarked array E, stops at P with every

point of E marked with v. It follows that we can modify the

algorithm , by interchanging the roles of points marked v and

unmarked points, so that when it starts at P on an array

having every point marked v, it stops at P with every point

unmarked . Thus the algorithm together with this modification

of it define the desired DTBA , and the proof is complete. !!

Another DTBA traversal theorem will be given in Section

4.4.2, when we show that a DTBA can distinguish the outer

border and the hole borders of its input array E , and can

find (e.g.) the leftmost of the uppermost points of the

outer border.

A nondeterministic TBFSA can traverse all of E by simply

moving nondeterministically from neighbor to neighbor; but

it can never know when it has finished , i.e., it can never

correctly make a state change that depends on its having seen

all of E, and it cannot recognize its starting point if it

moves too far away from that point. The proof of the

following result is based on ( 8].

Theorem 4.4.3. There exists no TBFSA that, from any starting

point on any input array E , accepts when and only when it has

visited all of E.

I
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Proof: Suppose A were such a TBSFA, say having QI states.

Let us first consider the behavior of A on n—by-l (i.e., one-

row) arrays E that are surrounded by #s except possibly at

their ends. A can enter such an array at either end in any

of ~~ states, and it can leave at either end in any of

sets of states. Thus the number of possible mappings

from entering end and state to leaving end and state set is

(2.2 lQ l )2 IQ I~ Since this number does not depend on n, there

must be many n ’s that yield the same mapping , and in particular ,

there must be at least one infinite set of n ’s, say

with n1 <n 2 <n 3 ..., that yield the same

mapping . A similar argument, using 1-by-n (one-column)

arrays E~ shows that there exists an infinite set

of lengths all of which yield the same input/output mapping

for A.

Since for any E , A accepts iff. it has seen all of E,

this is true in particular when E is a hollow rectangle one

point thick. Let us choose such a rectangle R that has

— horizontal side length n
~~~

N and vertical side length n t N ’.

By the definitions of N and N’ , the behavior of A on R is

the same no matter which n.~~N and which n~ EN ’ we use to
i

define R, in the sense that if A starts in state q0 ~t some

point of R , the (sets of) states in which A enters and leaves

the var ious sides of R are the same for all such R’ s. Since

A accepts such an R in a finite time , A can only make a finite

number m1 of clockwise circumnavigations of R, and a finite

— _~W 1



number of m2 of counterclockwise circumnavigations
, relative

to its starting point, before accepting , and these bounds

are valid for all such R’s.

Let S be the rectangular spiral constructed from a

succession of horizontal and vertical line segments of

lengths nl, nj,n2,n~ ,...,
n4m In~m

, where m=max(m1,m2); e.g.,

the first two turns of S might look like this:

n3

n1

fl
,
~ n~ n2

(If two consecutive ni’s or n~ ’s differ by 1, we can skip

one of them to insure that the turns of S never touch one

another.) Suppose that A starts out in state q0 from a

position on the mth turn of S, i.e., from one of the seg-

ments n2m_l,n2m ,n~m_l~ 
or 1

~ m 
By construction of S, the

(sets of) states in which A enters or leaves the various

sides of S are the same as those for the R’s, as long as A

never gets to an end of S. But in fact, A accepts the

R’ s after having made at most max(m1,m2) turns around R, so

that in fact A never reaches an end of S. Thus A accepts S ;~1_
_
. -

without ever having seen its ends, contradiction. !!
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4.4.2. Connected array lancjuages

We can apply the traversal results obtained in

Section 4.4.1 to show that the sets of E’s accepted by the

arbitrary or the tape-bounded acceptors is usually the same

whether we require acceptance from all initial positions ,

from any initial position , or from some standard initial

position such as the “upper left corner” (=leftxnost of the

uppermost points) of E. Let L 1~
(A) , L u (A) , and Lc (A) be de-

fined as in Section 4.3.1. Then we can prove

Proposition 4.4.4. For any A there exists an A’ such that

L 11 (A’) Lu (A’) Lc (A); if A is #P or TB, or is determin-

istic, so is A’ .

Proof: Suppose f i r s t  that A is not TB. From its initial

position , A’ marks a rectangular spiral that contains E , as

in the proof of Proposition 4.4.1. By moving to the upper

left corner of this spiral and then doing a row-by-row scan ,

A’ can easily find the upper left corner of E. A’ then

* simulates A , but ignoring the marks on the points of the

spiral. Clearly A’ accepts iff. A does, and if A is deter-

ministic , so is A’ .

To handle the case where A is #P or TB, we must show

that there exists a DTBA that can find the upper left corner

of its input array . This is shown in the proof of Theorem

4.4.5 immediately below.!!:1
--4
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P If A is FS, the proof of Proposition 4.4.4 breaks

down ; in fact, there does not exist a TBFSA that can find

the upper left corner of its input array . Indeed , suppose

A’ were a TBFSA that accepted when it found this corner.

Construct the hollow rectangles R and rectangular spiral S

for A’ as in the proof of Theorem 4.4.3, where the number of

turns of S is chosen to exceed the number of turns that A ’

makes on R before accepting at R’s upper left corner. Then

if we start A’ in the middle of S, it accepts at some north-

west corner of S without ever having found the real upper left

corner of S.

Theorem 4.4.5. There exists a DTBA that, from any starting

point on its input array E , can find the upper left corner

of E.

Proof: The proof makes extensive use of the topological

properties of arrays studied in Chapter 2, and in particular ,

of the border—following algorithm BF defined in Section 2.6.

We first show that our DTBA , A , can find the outer border

of E; this is the border along which E is adjacent to the

background component of ~ , as distinguished from hole borders

along which E is adjacent to other components of ~ (if any).

To find the outer border of E , A operates as follows:

a) A moves up until it bounces off a #.

b) When this happens, A has hit a border of E. A now

marks its position, say with the mark c*, and proceeds

to follow the border , using essentially the border— -



following algorithm BF of Section 2.6. (A can

evidently check the neighbors of the a by making

a sequence of local moves, and determine which of

these neighbors is the next border point specified

by BF.) The point a may be on several borders of

~~, but the border that A follows is the one defined

by the component of *s containing the * just above CL .

c) During border following , A keeps track of its net

up/down moves by moving another marker , 6, along the

border. Specifically, whenever A moves down, it

marks its current position on the border (say with

y), follows the border back to 6 (or to a, if 6 has

not yet been used) , erases 6, and rewrites it one

step further along the border. A then returns to

y, erases it, and resumes following the border.

(Note that 13 can never catch up with y, since the

number of downward moves made by A cannot exceed its

total number of moves along the border.] Similarly ,

whenever A moves up, it marks its position with y ,

goes back to 6, erases it, rewrites it one step

further back along the border , returns to y, erases

it , and resumes border following . The markers 13

and y must contain information that specif ies which *

* neighbor of the marked point is the current *

neighbor being used in the BF algorithm ; this is

- - 

because the border may pass through some points



twice , and 13 and y must be able to distinguish be-

tween two positions along the border even if they

are at the same point of E.

d) If 13 is in the same position as a when A comes to

move it further back , or if A moves up before 13 is

created , the current position of A on the border (as

marked by y) is higher up than the point at which A

hit the bc rder (as marked by a). If this happens,

A erases a and ~3, returns to y, erases y, and goes

back to step (a).

e) At each entry into step (a), A is higher up than it

was at the previous entry; hence steps (a—d) cannot

keep repeating indefinitely, since ~ is finite. Thus

eventually, while executing steps (b-c), A will get

all the way around the border and back to a without

case (d) occurring . This means that a is at a highest

point of the border . Now the highest points of a

hole border are evidently the points of E just above

the highest points of the hole , and cannot have points

of the hole above them . Since a does have above it

a * belonging to the component of *s whose border A

has been following see steps (a—b)), this component

cannot be a hole. Thus when case Cd ) fa i ls  to occur ,

a is on the outer border of E , and indeed , on an

uppermost point of this border.

_ _ _ _ _ _ _ _ _ _  
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I
We must now show that A can find the leftmost of the

uppermost points on the outer border of E. To this end , A

can mark its starting point with a and proceed to follow

the outer border , keeping track of its net downward moves by

moving a marker 13 along the border , as in (c) above, and

marking its current position with y. Whenever 13 gets back

to - L ~~ the net downward displacement of A is zero, so that

y is at an uppermost point. A marks the position of y at

that time with 5 , and resumes border following . When the

border has been completely followed , and A gets back to a,

the uppermost points of the border have all been marked with

ó’ s (or C L) .

To find which of these points is the leftmost, A once

again follows the outer border , this time using the mark 13

to keep track of its net leftward or rightward moves. (A

uses an internal state to tell it whether 13 is counting left-

ward or rightward moves.) Whenever A comes to a 5, if 13 is

counting rightward moves, this 6 must be to the right of the

ci, so A just continues to follow the border; but if 13 is

counting leftward moves , A changes the 6 to an ~, and marks

the current position of 13 with a c, before resuming border

following . The next time A comes to an 6, if the 13 is count-

ing rightward moves, or is counting leftward moves and is

between the ci and the c~, A just continues border following,

since this 6 either is to the right of a or is not as far

to the left of a as the c is; but if the 8 is counting left—

_________ 
_ _ _ _  
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ward moves and is farther from the a than the ~ . is , A changes

the L back to 6, changes the current 6 (where y is located)

to £ , erases the c , puts an r, at the current position of 13,

and then resumes border following . When A has followed the

border completely around and returned to ~~, the c will be at

the leftmost of the 6’s, i.e., at the upper left corner of

~~~. If desired , A can then go around the border again, erase

all the other marks , and follow the border around to the c.//

[A modification of the proof of Theorem 4.4.5 is used

in [ 9 1 to construct a DTBA , T, that systematically scans its

input array by finding the outer border , following it, and

scanning each row of Z, going around hole borders as it

encounters them. While scanning a row p, say from left to

right , when T hits a hole border , say at A , it follows that

border around , keeps count of its net up-down moves, and marks

with ~‘s all the intersections of the border with p . One of

these intersections is closest to X on its right , and so is

the next point (after A) in which p meets E. T can identify

this point by keeping count of net left/right moves, and can

then resume scanning p starting from this point.]

Returning to the relationship between L~~, L
~~

, and Lc,

we next prove

Proposition 4.4.6. For any A there exists an A” such that

Lc (A” ) = L
~~
(A)

~ 
and if A is #P , TB, or FS, so is A” .

Proof: Analogous to the first proof of Proposition 4.3.2.//

I
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Proposition 4.4.7. For any A there exists an A* such that

= L~1 (A) , and if A is #P , TB, or deterministic , so

is A* .

Proof: Analogous to that of Proposition 4.3.3 , using

Proposition 4.4.1 or Theorem 4.4.2./i

The analog of Proposition 4.4.7 for TBFSA ’s is false.

Let L be the language consisting of all arrays E that fail

to contain a particular symbol x. Evidently we have L=L (A) ,

where A is the TBFSA that accepts from state q0 if it reads

any symbol other than x; thus A accepts E from every starting

position if f. E contains no x ’s. On the other hand , suppose

that we had L = Lc (A*) for some TBFSA A* . In analogy with

the proof of Theorem 4.4.3 , we can construct a double rec-

tangular spiral S of the form

L ’ u _
on which A* behaves in the same way as on a hollow rectangle

R. If R contains no x ’s, and A* starts at the upper left

4 corner of R , A* must eventually accept R , say without making

more than m turns around H in either direction. If we choose

the two spirals in S to have more than m turns , A* must thus

accept S without ever r”aching its ends , so that it accepts

S even if there are x ’s at its ends , contradiction .

- - - A 
_ _ _ _ _ _ _ _ _  
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By Propositions 4.4.4, 6, and 7, it still makes no

difference , in most cases , whether we define acceptance

from a standard point such as the upper left corner, from

all points , or from some point. We shall use the upper-left-

corner definition from now on. The set Lc(A) will be called

the language of A , and will be denoted by L (A).

:
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4.4.3. The language hierarchy

We use the same terminology and notation for

connected array languages as we did for rectangular array

languages in Section 4.3.2.

As for rectangular arrays , we have LDT=L T and

LFS - LDFS, while the properness of LTB ~ LDTB is an open

question (and similarly for #P).

We can still show for connected arrays that

LD#p LDTB
; but it is no longer true that LDFS=LDTBFS. In

the remainder of this section we prove these results. The

proof of the first is based on E 6 3; that of the second is

taken from [10 1 .

f As in Section 4.3.2, the behavior of a D#PA , A ,

while on the # part of its page becomes periodic after at

most IQ I time steps, with period at most IQ I . Let p be the

string of U ’s, D’s, L’ s and R’s that defines the nonperiodic

part of A’s movement on the #s, and let a be a string that

similarly defines a single period of A ’s periodic movement.

Suppose that A leaves ~ at the point P, and let B be the

border along which E meets the component of #s into which A

has moved. If A ever reenters ~~, this must happen at some

point P’ of B.

If the net displacement of A over an entire

period a is zero, A must reenter E (if at all) either during

p or during the first period a, i.e., in less than 2 (Qt time

~~i- ~~~~~~~ steps, so that the behavior of A can be simulated internally

_ _ _  

-



r by a DTBA that remains on ~~~. Suppose that the net displace-

ment is (r,s) ~ (0,0). Then if A reenters during the kth

period a, k cannot exceed the length 18 1 of B by more than

a bounded amount, since the reentry point P’ is on B. Thus

* 

A reenters in at most about IQ I IB I time steps, if it re-

enters at all.

• It follows that the behavior of A while on the

#s can be simulated by a DTBA, A’ , that uses B as a tape.

In particular , A ’ can use B to compute the position of A

relative to P. and the state of A , at each of the IQ I IB I time

steps. For each of these positions, A ’ can also follow the

border B, compute the displacement of each border point rela-

tive to P (see the proof of Theorem 4.4.5), and check whether

this displacement is the same as the given position of A.

If so, A ’  can mark that border point, erase all other traces

of its computations on B, go to the marked point, erase the

mark , enter the appropriate state, and resume simulating A

on ~~. If none of the positions of A during the first IQ I (Bj
time steps coincides with a point of B, A will never return

to E. (If A accepts E without returning to it, this must

happen within 2)QI time steps, so that A’ can ascertain this

fact as soon as A leaves E.J This discussion has established

Theorem 4.4.8. =

On the other hand , we shall now show that c LDF$.

To this end , consider the set of thin (width 1), upright



Ps
L-shaped arrays of (say) x ’s on a background of #s. We

first show that this set is accepted by a DTBFSA, A. In

fact, A moves left until it bounces off a *, then moves up

until it bounces off a #. A then verifies that it has #s

on its left and right , moves down, and repeats the process.

If, at some stage , A finds an x on its right, it verifies

that there are #s on its left and below it, and moves to the

x on its right . Here A verifies that there are #s above and

below, moves right, and repeats the process, until its right-

ward movement bounces off a #. If all these verifications

are successful, A accepts; if any verif icat ion fa ils , A stops

and does not accept. Evidently A accepts 1ff. its input

array is as described above.

We next consider the set of such L-shaped arrays for

which the arm s have equal length , and show that this set is

accepted by a DFSA , A ’ . In fact, A’ first verifies that its

input is L-shaped , as in the preceding paragr~iph. It then

moves “diagonally ” across th~ #s, i.e., it moves alternately

to the left and upward . if , on an upward move, A ’ hits an

x, it verifies this x is at the upper end of the L, and

accepts. Evidently, this happens only if the arms o~ the

L are equal. Note that if tI~e vertical arm is shorter than

the hor izontal arm ,A’ will move diagonally forever without

accepting .

Final ly ,  we show that no DTBFSA can accept just the

equal-armed L ’s.  Suppose that A” were such a DTBFSA.

1 •



Consider the set of one-dimensional arrays of the form

al
~ba

n , and let A* be a DTBFSA that behaves on these arrays

exactly as A” behaves on the L’s, except that when A* is to

the left of the b , its moves are 90° rotations of those of

A” (so that when A” moves up, A* moves left, and so on). If

A” accepts just the equal-armed L’s, then A* accepts just

the strings a%a~ for which m=n. We could thus define a

one-dimensional FSA , A** , that accepted exactly these strings;

but this is impossible (see Section 3.3.2). We have thus

proved

Theorem 4.4.9. LDTBFS ~ 
LDFS.//

As in Section 4.3.2, we still have

Theorem 4.4.10. L (D)T ~ 
L~8; LDTB ~ 

LDFS.//

The proof is the essentially same as that of Theorem

4.3.7, using n-by-l arrays, on which DTBFSA ’s can simulate

DFSA ’ S.

“Three—way” acceptors (see Section 4.3.3) will not be

studied for connected arrays; it is evident that they would

be very weak.

— ~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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4. 5 Closure proper ties

In t ~is section we consider two-dimensional generaliza-

tions of the closure properties discussed in Section 3.5.

A finite intersection of TL5 or TBLs is a language of

the same type; the proof is analogous to that of Proposition

3.5.1. Note that in this pro f, af ter completing each simu-

lation , the au tomaton A must restore the origina l arr ay and

return to its starting point (the upper left corner) before

beginning the next simulation; this requires that A be able

to scan the non-#s and to find the upper left corner , and we

have established that TLs and TBLs have these capabilities.

A f in ite intersection of rectangular FSLs is an FSL , as in

Proposition 3.5.1, since no restoration of the original

array is necessary , and it is trivial to find the starting

point. We leave open the question of whether a finite inter-

section of connected FSLs is an FSL .

A finite union of TLs, TBLs , or FSLs is a language of

the same type. As in the case of Proposition 3.5.2, we can

prove this nondeterministically ,  or we can give a determinis-

tic proof for (TL5 or) TBLs: A scans E and updates the

positions and state of each simulation. We leave open the

question of whether a finite union of DFSLs is a DFSL, as

well as the question of whether the complement of an FSL of

-; an FSL is an FSL.

Any singleton {E] is a DFSL, since we can always design

a DFSA that goes through a specific sequence of moves and

state changes and verifies that its input array is exactly E.

_______JLi____ _ 
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By a similar argumen t, any finite set of arrays is a DFSL.

A subset of an FSL is not necessar ily an FSL ; we can use the

same example as in Section 3.5. The set of rectangular

arrays that contain, or fail to contain, a given connected

subarray E,,~ is a DFSL, since we can design a DFSA that sys-

tematically scans the rectangle , and at each position ,

checks whether E0 is present. On the other hand , the set of

connected arrays tha t fa il to contain a given 
~~ 

(or even a

given symbol x) is not a DTBFSL , as shown at the end of Sec-

tion 4.4.2. The set of connected arrays that contain a is

a nondeterministic TBFSL (the FSA moves around nondeterminis-

tically , and at each posi tion , checks for E0); we leave open

the question of whether it is a D(TB)FSL.

Reversals , cyclic closures , closures , and concatenations

cannot readily be defined ~or connected arrays , but we can

define them for rectangular arrays in both the horizontal

and vertical directions. It is clear that the row or column

reversal of a TL, TBL, or FSL is a language of the same type ,

just as in Proposition 3.5.5, and the same is true when both

rows and columns are reversed . By a similar argument , we

can easily see that the set of reflections (in a horizontal

or ver tical axis , or both), or the set of 900 rotations (or

180°, or 270°), of a given connected array language is a

language of the same type.

The cyclic closure or column closure (or both) of a TL

or TBL is a language of the same type, as in Proposition



3.5.6. Here the TBA nondeterministically marks a row and/or

a column of the given array ~~, and simulates an acceptor for

the given language using the marks to define a cyclic shift.

Similarly, the TA dissects 2 at the marks and creates an

“unshifted” -copy of E on which to do the simulation. We 
*

leave open the question of whether cyclic closures of rect-

angular array FSLs are FSLs.

In defining the concatenative row (or column) closure

of a rectangular array language , or the concatenation of a

set of such languages, we must assume that the numbers of

rows (or columns) all match, so that the resultant array is

still rectangular. These operations preserve TLs or TBL5,

as in Propositions 3.5.7-8; we can nondeterministically seg-

ment a given rectangular array by marking a set of columns

(or rows), and ther’ check that each segment is in the appro-

priate given language.

The FSL’s are not closed under (row or column) con-

concatenation or closure*. To prove this, we first make

an observation about the behavior of an FSA , A , with re-

spect to a given (horizontal or vertical) slice of a rec-

tangular arr ay E .  (Compare the discussion of blocks in

the proof of Theorem 4.3.4.] Let S be a subarray of ~ con-

sisting of m consecutive rows (say), where each row has length

*The proof in the following paragraphs is taken from K.

Inoue , A. Nakamura , and I. Takanami, A note on two-dimensional

f i n i te automata, ~~formatiOn Processing Letters, 
to appear.
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n. A can enter S at its top row at any of n positions

and in any of q states , and can leave S at its bottom row

at any of 2~ sets of positions and in any of sets of

states (or n and q, if A is deterministic). Thus the num-

ber of mappings from (entering position , entering state)

into (set of leaving positions , set of leaving states) is

= 2(n+q)nq note that this number is independent

of m , the number of rows. On the other hand , the number

of possible rows, say made up of two symbols 0,1, is 211,

(2 fl
)and the number of possible nonempty sets of rows is 2 -1.

For large n, 2 ’ is greater than (n+q)nq, so that there are

more sets of rows than there are I/O mappings , and there

must exist two slices having different sets of rows that

give the same mapping for a given A. (Of course , these

sets of rows may have to be quite large , i.e., m may have

to be as large as 21
~.)

We can now prove

Proposition 4.5.1. The set of rectangular FS languages is

not closed under horizontal or vertical concatenation.

Proof: The set of all rectangular arrays on (say) 0 and 1

is obviously FS, and so is the set of all such arrays whose

top and bottom rows are the same (A does a column by column

scan , and checks that the f i r st and last elements of each

column are the same). We shall now show that the vertical

concatenation of these two languages is not PS. (An ex-

actly analogous proof can be used for horizontal concatena- j
i(

- - 

- 
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tion.] Note that this concatenation is just the set of

arrays I in which the bottom row is the same as some nontop

row. For any FSA , A , let and S2 be rectangular arrays

that have different sets of rows R1 and R2, but that yield

the same I/O mappings for A , and let R be a row in but

not in R2. Let E1(E 2) be S1(S2) with some arbitrary row (MR)

appended at the top, and with R appended at the bottom.

Thus is in L but 
~2 

is not. We can assume without loss

of generality that A starts at the top row and moves down

to the bottom row of its input array before accepting .

Thus if A accepts 
~~~~
, it also accepts Z2, so A cannot accept

exactly L.//

A similar argument can be used to prove

Proposition 4.5.2. The set of rectangular PS languages is

not closed under horizontal or vertical closure.

Proof: Let E be an array obtained by vertically concatenating

a) An arbitrary array of 0’s and l’s

b) A row of 2’s

c) An array of 0’s and l’s whose top and bottom rows

are identical.

Clearly the set L of all such arrays is PS. On the other

hand , the vertical closure of L is readily not FS, by an

argument analogous to that used in the proof of Proposition

4.5.1: in the zones between the rows of 2’s, we must now

verify that the top row is identical to some non-bottom

row, which cannot be done by an FSA.//

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
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CHAPTER 5

CELLULAR ARRAY ACCEPTORS

5.1 ucti

Cellular array acceptors are two-dimensional analogs of

the cellular acceptors studied in Section 3.4. They are

arrays of cells , all but finitely many of which are in a

special state # .  The non—#s may constitute a rectangular sub-

array, or merely a connected subarray ; as in Chapter 4, we

shall consider both possibilities. As in the one-dimensional

case, we shall show that these acceptors define no new

classes of langauges , but that they often make acceptance

possible in a much shorter time.

_  ~~~~~~~~~~~~~~~~



5 . 2  C e l l u l a r  d r r d y  au toma ta  and acceptors

Informa lly, a two-dimens ional  cel lular  automaton is an

arra~- of “ ce l l s ’ eac } of w h i c h , at any given time , is in some

state. The cells operate in a sequence of discrete time steps ,

at each of which every cell reads the states of its four hori-

zontal and vertical neighbors , and changes to a (possibly)

new s t a t e .  Thus , formally, a two—dimensional cellular auto-

maton K is defined by specifying a pair (Q,6), where Q is the

3et of states, and S is the transition func t ion  that  maps

quintuples of states into sets of s ta tes  (or into single

s ta tes, if K is deterministic) —— i.e., ó: Q5 -~ (or -
~ 
Q).

For each cell c of K , ô maps the quintuple (state of left

neighbor , state of right neighbor , state of upper neighbor ,

state of lower neighbor , state of c) into the set of possible

new states of c, where in the deterministic case , this set

always consists of a single element. A configuration of K is

simply a mapping from lxi (the pairs of integers) into Q which

specifies the state of each ctK .

• 1



5.2.1 Neighborhood size [11]

In the above definition we used only the four horizontal

and vertical neighbors of each cell c. We could have used

other sets ot. neighbors; for example , we could have also

allowed the states of the diagonal neighbors of c to affect

c’s next state. However , a transition that depend s on a

larger set of neighbors can be simulated by a sequence of

transitions involving only the four neighbors , so that a

cellular automaton K that uses a larger neighborhood set can

be simulated by a K’ that uses only four neighbors , at a rate

of several time steps of K’ for each time step of K. For ex-

ample , suppose that we want to simulate a transition that de-

pends on the states of the eight (horizontal , vertical , and

diagonal) neighbors of each cell. One way to do this is for

each cell , at even-numbered time steps, to go into a state

of the form (q 1,...,q5), where the q ’s are the previous

states of the cell and its four neighbors. If we denote the

state of the cell at position (i,j) at a given odd—numbered

time step by q~~ , then at the following time step the cell

states in the neighborhood of (i,j) are

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

~~~~~~

qj_1,j)

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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V
The cell at (i,j) now has available to it the states (at the

previous step) of itself and its horizontal and vertical

neighbors , stored in its own current state; and it also has

available the previous states of its diagonal neighbors (as

well as the states of other cells at city block distance 2 from

it ) ,  stored in the current states of its horizontal and verti-

cal neighbors (e.g., the state of (i,j)’s upper—left

nei ’hbor is available as the first term of its upper

neighbor ’s state , and also as the third term of its left

neighbor ’s state). Thus at the next odd numbered step , cell

(i,]) can go into a new state that depends on the previous

states of all eight of its neighbors. This process can then

be repeated at succeeding pairs of time steps. Note that it

not only requires two time steps of the four-neighbor automaton

to simulate each time step of an eight-neighbor automaton ,

but it also requires a much larger set of states (quintuples

of the original states are needed at even—numbered time steps)

It can also be shown that a cellular automaton whose

transition function involves only two neighbors in non-

collinear directions , say north and east, can simulate an

automaton that has a larger neighborhood -- e.g., the four
horizontal and vertical neighbors. To see this, let us have

each cell , at time steps that are not multiples of 4, go into

a state that contains information about the previous states of

i ts neighoors. Thus the cell at (i,j), at time steps 1, 2, and

• 
• 

- 
3 (modulo 4), contains information about the states of the

following cells:

- - 
-
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I

Step Cells

1 (i,j) , (i+l ,j) , (i,j+l)

2 These together with (i+2,j), (i+l ,j+l), (i,j+2)

3 These together with (i+3 ,j) , (i+2 ,j+l), (i+l ,j+2)

(i,j+3)

Hence at step 3, cell (i,j) knows the states of cell (i+l ,j+l)

and i ts  four  neighbors ( i + 2 ,1+ l), (i , j + l ) ,  ( i+ l , j + 2 ) ,  and

(i+11j1, so that at step 4, cell (i,j) can go into a new state

that depends on the old states of cell (i+l,j+l) and its four

neighbors. The entire process is then repeated . Note that it

requires four time steps of the two-neighbor automaton per time

step of the four-neighbor automaton , as well as a much larger

state set. Moreover , the two-neighbor simulation does not re-

main stationary ; it shifts downward and to the left by one unit

in each four time steps. This type of simulation would not be

appropriate for bounded cellular automata (see immediately be-

low). We shall consider only four-neighbor automata from now

on.

rr — . •.;;~•. 
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5.2. 2 Boundedness and acceptance

We shall assume henceforth that the state set Q is

finite, and that there is a special state #~Q such that , in

the initial configuration of K , all but a finite number of the

cells have state #. In Section 3.4 we further required that

the non-# cells form a string . There are two possible gen-

eralizations of this requirement to two dimensions: We can

require that the array ~; of non-# cells be rectangular in

shape, or merely that ~ be connected . We will consider both

of these possibilities in this chapter .

We say that the transition function 45 of K is

~~~reserving if

* ‘.. 6(q,r,s,t,u) implies u=#
6(q,r,s,t,*) = {*} fcr all q,r,s,t in Q

• If 45 has this property , we call K a bounded cellular automaton.

[As in Chapter 3, inability to create #s is not a restriction

on K; we shall therefore assume from now on that 45 never

creates *s.] Note that in the bounded case we may as well

assume that the array of cells is finite , consisting of 

~surrounded by a border of #s, since the #s will never change.

The notion of acceptance of an input array by a cellular

automaton K is defined exactly as in the one-dimensional case.

Formally, a cellular acceptor (CA), C, is a triple (K,QIIQA)I

where K is a cellular automaton with state set Q , 
~~
. Q is

a set of initial states, and 
~A ~ 

Q is a set of accepting

states, with *tQ1. If K is bounded , we call C a bounded

cellular acceptor (BCA) . An input array is a configuration



r whose states are all in Q1. We say that C accepts this array

(or, for brevity, that C accepts the non-i part E of this

array) if repeated application of K’s transition function ,

starting from this configuration , can lead to an “accepting

configuration” .

As in Section 3.4.1, we can define an accepting con-

figuration in three ways:

a) Every etC has its state in

b) Some cLC has its state in

c) A particular c0tC -- e.g., the leftmost of the
uppermost cells of E -- has its state in Q1 .

We can show, using analogs of Propositions 3.4.1-4, that in

most cases the classes of languages accepted in these three

ways are the same. The proofs are much simpler for rectangular

~s than for arbitrary connected Es; we shall treat the rectan-

gular case in Section 5.3 , and the connected case in Section

5.4.



5 . 3  Rectan9~i1ar ce l lu lar_acceptors

5. 3.1 Rectan~j u la r  cellular_langua~~~~

The analogs of Propositions 3 . 4 . 2- 4  for rectan-

gula r cellular arrays follow readily from the observation that

the upper left corner cell c0 ( E  leftmost of the uppermost

cells) can uniquely identify itself at the start, since it is

the only cell that has #s both above it and to its left. In

Proposition 3.4.2, when any cell enters an accepting state in

the simulation , it initiates an accepting signal that spreads

in all  directions (through non-is) ; since E always remains

connected (#s are never created) , this signal eventually reaches

c0, which then accepts. Proposition 3 .4 .3  is immediate : in

the simulation , onl y c0 can enter an accepting state . In

Proposition 3 . 4 . 4 , when c0 accepts in the simulation , it

initiates an accepting signal that spreads in all directions

(through non-#s), so that this signal eventually reaches all

of E and causes every cell to accept; by using ~ half-speed

simulation , we can assure this even if the simulation is grow-

ing.

For Proposition 3.4.1, c0 identifies itself ,

and C’ simulates C. If c0 accepts in the simulation , it sends

out a signal that spreads in all directions through accepting

states. We shall show next how this signal can generate a 
*

reply that reaches c0 if f. every non-# cell is in an accepting

state. [Here we use the assumptions that accepting states are

never rewritten and cannot cause *s to be rewtitten; we shall

41r_ — 
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0 see later how these assumptions can be avoided at the cost of

a much slower simulation.] Thus c0 can accept iff. every cell

of the simulation has accepted.

If C is a BCA , the propagation of the reply signal can

be done very simply, since the array F. of non-#s remains rec-

tangular. Let c1 and c2 be the cells in the upper right and

lower right corners of E , respectively ; they are uniquely

identified by having #s as their right and upper (or lower)

neighbors. When the acceptance signal i reaches c,, it initiates

a signal ~ that can only spread leftward through accepting

states; thus ~ reaches all cells of the bottom row of E if f.

they are all in accepting states. In turn , ~ initiates a

signal y that can only spread upward through accepting states;

thus y reaches the top of a column of E iff. that column con-

sists entirely of cells in accepting states. When y reaches

it initiates a signal ~ that can only spread leftward

through cells that have received y. Thus 45 reaches c0 iff.

reached the top of every column of E , so that every cell of

X is in an accepting state, and c0 can finally accept. Note

that the time required for u to reach c2 is h+w-2, where h is

the height and w the width of E ; and the time required for 45
F 

to reach c0, if every cell has accepted , is also only h+w-2.

(Indeed , ~ reaches the cells of the bottom row at times

O ,l ...,w-l; -y reaches the cells of the top row at times

h-l , l+(h-l),...,(w—l)+(h -l); 6 is initiated at time h—l , and

reaches each cell of the top r~~ just as y reaches it, so that ~~~~~

it reaches c0 at time (w—l)+(h-l).) ?~ J
- -

— p — 
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If C is not a BCA , E may not be rectangular , but we

can handle the propagation of the reply signal by generating

a rectangle R containing ‘
, and transmitting the signals through-

out that rectangle. [In Section 5.4 we will describ e a method

of signaling that does not require going outside even if E

is nonrectangular.) In the following paragraphs we describe

one method of doing this, derived from [12), which generates

a square (oriented diagonally) centered at c0 that contains

Let us assume that the simulation of C is done at half

speed. Concurrently with this simulation (using first terms

of state pairs), we propagate a single a outward from C
0
;

i.e., any cell , say in state q (non-# or # ) ,  not having a as

first term , that sees first term a as one of its neighbors

becomes a pair (u,q). Moreover , we record the direction(s)

from which a reaches each cell; e.g., we can do this by using

eight versions of a, denoted by aN,US,aE , aW,aNE,aNW,USE, and

to indicate whether a reached the given cell from its

north , south, east or west neighbor , or from both its north

and east, ..., or south and west neighbors (readily, these are

the only possibilities) . This process generates an expanding

wave of a’s shaped like a square oriented diagonally, with

center at c0. We will assume that the propagation of the a ’s,

like the simulation of C, takes place at half speed ; thus the

a’s add a new layer to the expanding square at alternate time

steps. (The reason for this assumption will become clear

~ :; 
later.)

~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



As the a ’s reach each new layer , they send back an *

“echo” signal 13 to C0. (This is done once only at each layer;

to insure this, we mark the newely created a’s, say with

primes, which are erased at the next time step, and only the

primed ~‘s initiate the 13 signals.) The directional informa-

tion contained in the a ’s is used to direct 13 so that it

travels back to c0 along the shortest possible paths. For ex-

ample, if cell c, say in state (ci ,q), has an a’N~
a’NE l or

or an (aN,~~
),(aNE ,13) or (a~~ ,13), in the first term of its south

neighbor, it goes into state ((a ,13) ,q); and similarly for the

other three directions. It is easily seen that the 13 signals

from a given layer of a’s generate a contracting wave of 13’ s

that occupies the successive layers of the square centered at

c0, from outermost to innermost. If the 13’s start at a layer

t steps away from c0, they reach c0 (from all four sides) t

time steps later. We shall assume that the 13’s propagate at

full speed , and that 3’ s are erased as soon as they are

created. It follows that the successive a layers create waves

of ~‘s that are spaced two units apart, and do not interfere

with each other.

Each 13 wave can carry inform ation to c0 about the a

layer that initiated it and about the other layers through

which it passed. Specifically , if a 13 is ini tiated by a cell

whose state is of the form (~~,q), where q p~ #, we shall denote

it by f*~ (A given 8 may be initiated by two a cells; we use

8* if either of these cells has a non—# second term.) More-

over, if a 13 reaches a cell whose second term is neither I nor

~ I1 _ .~~~_•• • - • • .
~~ ~
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an accepting state of C , we change it to 3~ . When 13 ’s reach a

cell c from two or more of its neighbors at once, then if any

of these 13’s is a 13* , we use 8~ at c also. These conditions

imply that if any cell in the initiating a layer is non-#, or

if any cell wi th in  the square of a ’s is neither * nor accept-

ing, then the 13 that reaches c0 will be a 13*~ Conversely, if

an unstarred 13 reaches c0 (i.e., it receives 13’s from all four

neighbors, and its own state is * or accepting), we know that

a) Every cell in the initiating layer is #

b) Every cell in the square is * or accepting.

Since the non-is always remain connected , (a-b) imply that every

non—* cell is an accepting state. Thus when this happens , c0

can accept. Moreover, if it ever does happen , this process

will detect it, since accepting states do not change and do

not cause #s to be rewritten; thus if every non-# is accepting ,

stops growing, and the a propagation catches up with it and

reaches a layer of all Is, so that a 8 wave is generated that

• satisfies (a—b).

- 
• 

In the construction just given , the a wave never stops

propagating . In order to stop it , c0 (upon acceptance) can

send out a full-speed signal y that erases the a’s and 13’s as

it encounters them , and erases itself when it reaches the Is

beyond the outermost a’s. If this is done, the expanding

square never grows beyond a bounded size. Note, however , that

this size may be much greater than the radius of t ; e.g.. E

may stop growing long before its cells all go int. accepting

states, so that the square gets much bigger than ~ before the 13

- . - .—~~~- ~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~



wave detects acceptance. Thus after every cell of E has

accepted , the propagation of the acceptance signal 13 may take

much longer than the diameter of E, which is undesirable.

We can reduce the time to be on the order of the

diameter of ~ by modifying the construction as follows: The

square of a’s expands (at half speed) until its outermost

layer consists of Is only,  so that it entirely contains i .

The 8 wave relays this information to c0, which sends out a y

signal (at full speed) to stop the expansion of the ct ’s. [Here

the 13 wave must carry two independent pieces of information ,

one about Is in the outer layer , and -the other about Is and

accepting states in the interior; and the y signal does not

erase a’s and 13’s, but only “freezes” the outermost a ’s so

they cannot expand . Note that by the time the 13 wave reaches

c0 and the ~y signal reaches the outer layer , the square has

tripled in size; but its radius is still of the same order as

that of E.] The outermost ct ’s continue to send back 13 waves

even though they have stopped expanding (these waves are now

consecutive , but still do not intefere with one another) , so

that c0 can continue to check whether the outer layer is still

all * and whether the interior is all I or accepting . If these

conditions are met, c0 accepts. If non-Is reach the outer

layer (due to continued expansion of E) before the cells of E

have all accepted , C
0 
discovers this from the 8 signal and

sends a full—speed 6 signal to the outer layer. Arrival of

- 
- 

this signal causes the outer layer to start expanding again

(at half speed), and also to send a full-speed ~ signal back

- 
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to c0; when c0 receives ‘~ , it sends a ful l-speed y signal to

stop the expansion again. During this time , the square again

triples in size. If the non-Is again overtake (or have already

overtaken) its outer layer , the process can be repeated. If

the cells of ever all accept , E stops growing , so the square

eventually expands beyond E , at which time the 13 wave detects

the conditions for acceptance . In tl’is construction , the radius

of the square is never more than t r iple the radius of E ;  hence

the time for propagation of the acceptance signal E , after all

cells have accepted, is on the order of the diameter of E.

Up to now we have assumed that accepting states never

change and never cause * to become non-Is. Even without these

assumptions, we can still verify that every cell (of a simula-

tion of C) has accepted , but the process is now much slower.

The approach is analogous to that in the appendix to Section

4.3.1; it consists of the following steps:

a) We simulate C one step at a time .

b) After each step of the simulation , we construct a

square centered at c0 that contains L , and check

whether ever non-I cell in this square is simulating

an accepting state of E• [Here C’ is not a BCA!)

c) If so, c0 accepts; if not, c0 initiates a two-

dimens ional synchronization process tha t causes all

the cells of the square to go into a special state,

at which point the non-I cells simultaneously H

simulate another step of E.

_______________________ 

______________________________ 
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This process is repeated as often as necessary.

The two-dimensional synchronization process is a

straightforward extension of the one—dimensional process de-

scribed earlier; see, e.g., [13]. To illustrate how it

works , let us suppose for simplicity that we have a w-by-h

upright rectangle R of cells with distinguished cell c0 in the

upper left corner . By the one-dimensional construction , c0

can synchronize the left column of R , and this takes 0(h)

steps. Each cell in the l e f t  column can then synchronize its

row , and this takes 0(w) steps. Thus in 0(h-t-w) steps, the

entire rectangle can be synchronized .

The analogs of Propositions 3.4.1-4 shows that the de-

finitions of acceptance by some cells, all cells , and the

upper—left cell (or any cell that can uniquely identify it-

self) are all equivalent . We shall use the upper-left defini-

tion from now on , and shall always assume that cell c0 is

uniquely marked .

The set of input arrays ~ accepted by C will be called

the language of C, and will be denoted by L(C). Note that

L(C) can contain arrays of any size, depending on how many

cells of C are initially in non—# states. [C is regarded as

the same CA no matter how big E is, as long as C has the same

transition function.) The class of all languages accepted by

CD) (B)CA’s will  be denoted by L CD) (B)c~
We conclude this section by showing how a DBCA can

verify that its input Z is indeed rectangular. Note first

that a connected ~ is rectangular if f. it has no concave cor-
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ners , i.e., there are no 2-by-2 patterns exactly one of whose

c~ 1ls is I (this will be proved immediately below). Next,

note that the presence of concave corners can be detected , in

only two time steps , as follows :

Any cell that has a * as a north , south , east, or west

neighbor is marked N ,S,E, or W , respectively.

Any cell that has an S as east neighbor and an E as

south neighbor , or analogously for the pairs of

directions S and W , N and E, and N and W , is marked

K.

E vident ly  a cell is marked K i f f .  it belongs to a concave cor-
KSner , e.g.,

Finally , cell C
0 

can determine , in a number of time steps on

the order of the diameter of E, whether or not ~r contains any

K’ s; a method of doing so will be described in Section 5.4.

If contains no K’ s, C
0 
can accept .

Proposition 5.3.1. A connected set E is an upright rectangle

if 1. it has no concave corners.

Proof: Clearly a rectangle has no concave corners. Conversely,

consider a max imal set of runs in wh ich consecutive rows of

the array meet E and which are pairwise adjacent. Since there

are no concave corners, these runs must line up at both ends ,

and none of them can merge or split; hence they constitute an

upright rectangle, and no other run of points of E is adjacent

to them. Since ~ is connected , they must thus be all of ~.//

_ _ _  — 
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P Aj~pendix to Section 5.3.1

In this appendix we show how to construct the upright

rectangle R ( ’ . )  that jus t  contains a given connected ‘~ (so that

there are points of ) in the top and bottom rows , and left and

right columns , of R(~~)). We will call R(i.) the framing rect-

~~~~~ of ~:, and we will denote ‘ - its extremal rows and columns

by t,b ,Z , and r , respectively.

Our construction is based on a propagation process that

repeatedly fills concave corners; in other words , if a # cell

has two non-I neighbors on adjacent sides of it (N and E, N

and W , S and E, or S and W) , we change it to a non-I , say to

- We shall show that if this process is iterated until no

further change takes place , the L~s together with - itself

constitute exactly R(~ ) . Moreover , the process stops in a num-

ber of time steps at most equal to h+w-2 , where h and w are

the height and width of R(E).

Note first that when we fill concave corners , the framing

rectangle is not enlarged. Indeed , clearly a 41 above t, below

• b , to the ri ght  of r , or to the left of ~ cannot belong to a

concave corner; hence no step of the propagation process can

create a outside R(E) - Since R(E) is finite , the process

must stop eventually. On the other hand , when the process

stops, the resulting ~ has no concave corners, so by Proposi-

tion 5.3.1 must be an upright rectangle; and clearly the only

such rectangle that meets t,b,~ and r must be R(~ ) itself.

It remains only to show that this process of construct-

ing R(L) takes at most h+w-2 time steps. We do this in

- 
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* several steps:

a) Let us first observe that R(~ ) cannot contain a

4-path p of Is that  has one end on t and the other

on b . This is because ~ touches both ~ and r , so

that there is a path p ’ of non-Is in ~ ~ R(~ ) from i

to r , and p ’ would have to cross p, contradiction .

Similarly , there can be no 4—path of Is in R(1) that

has one end on Q. and the other on r.

b) Next , we show that for any point P t R(E) , there is

a quadrant in which Z surrounds P; in other words ,

there exists a pair of adjacent directions (N and E,

N and W , S and E, or S and W) such that any 4-path

starting at P that moves only ir~ these directions

must hit ~~~. Indeed , suppose not; then in all four

quadrants there are 4-paths from P that reach the

border of R( i ) without meeting E. The path p1 in

the NE quadrant, for example , must hit the border

either on t or on r; suppose it hits t. If the

path in the SE or SW quadrant -hit the bcrder on b,

then by concatenating this path with p1 we would

get a 4-path of #s from t to b (through P) , contra—

dicting (a). Hence the path in the SE quadrant

must hit r, and that in the SW quadrant must hit 2~,

so that by concatenating these paths we get a 4-path . 

•

of Is from £ to r (through P), contradicting (a).

The argument is analogous if p1 hits r; we would

then consider the paths in the NW and SW quadrants.



Thus we obtain a contradiction in any case, so that

(b) must be true .

c) Let PtR(E ), ~ 
)
~, and suppose that ~ surrounds P in

the NE quadrant. Thus if we move (e.g.) upward

from P, we must hit E ; if we then move rightward

(if possible), we must hit ~ again; if we then move

upward , we hit ~ again; and so on. The path of Is

(or las) along which we move is a 4-geodesic , since

it makes left and right turns alternately (see

Section 2. 9); thus the nth point on the path is at

city block distance n from P. Since ~ is finite , we

cannot get farther than a finite city block distance

from P; hence this process of path construction must

terminate. But it can only terminate at a point

which has E both above it and on its right , so that

neither upward nor riqhtward motion is possible;

thus the terminal point of the path is at a concave

corner of ~~~~. Since the path always remains inside

R(~ ), its length is less than h+w—2.

d) For any P~~R(~~), g E , let k be the length of the

longest geodesic from P through Is to a concave

corner of E; thus k < h+w-2. When we fill the concave

corners of ~~ , this path is shortened . On the other

hand , (a—c) evidently still hold , so that we can

repeat this argument, and at each iteration of con-

cave corner f i l l i ng , the longest geodesic length

from P through Øs to a concave corner of ~ decreases.

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _



Since in i t ia l ly  this length was < h+w-2 , the number

of iterations required to reduce i t  to zero is

< h+w—2. At this stage , P it self is at a concave

corner of , and at the next iteration ~ swallows

up P. Since P was a rb i t ra ry , th i s  means that  ~
g rows to fill all of R(E ) in at most h+w—2 i terat ions,

as was to be proved.
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5.3.2 Equivalence to seQuential acceptors

In this section we prove that TAS ’s and CA’s can simu-

late each other , and that the same is true for TBA ’s and SCA ’s.

This shows that, in introducing two-dimensional CA’s, we have

not created any new classes of languages. The proofs are

analogous to those in Section 3.4.2. To show that T (B)A’s can

simulate (B)CA ’s, we need to prove that a DT(B)A can systemati-

cally scan its array of non-Is, and at each point, compute

what the transition of the (B)CA ’s cell at that point would

have been. This has already been shown for DTA ’s in Proposi-

tion 4.4.1, and for DTBA ’s in Theorem 4.4.2. Note that even

when the inpu t array E is rectangular , we still need the

traversal result of Proposition 4.4.1 for the TA/CA proof ,

since ~ may grow . On the other hand , for rectangular ~‘s we

do not need Theorem 4.4.2 in the TBA/BCA proof , since ~ re-

mains rectangular , and its traversal is straightforward , e.g.,

row by row as in the proof of Proposition 4.2.1.

Theorem 5.3.2. (D)T(B)A’s can simulate (D)(B)CA ’s.

Proof: Given a CA , C, with transition function 6, we define a

TA , A, that has a vocabulary consisting of states and pairs of

states of C. Any any given stage of the simulation of C by

A , the non-I array Z has a pair of states at each point , one

of which represents the current state of the corresponding

cell of C, while the other represents the preceding state of

that cell. (Initially, Z consists of just the initial states

of C’ s cells.) To simulate one transition of C, A systematic-

~ ______



ally scans Z.  At each point P of ~, A also examines P’s

neighbors , records the current states of the corresponding

cclls of C, returns to P, and computes a new state of the

cell at P using 5. A then erases the previous—state informa-

tion at C (if any) and replaces it by new—state information ,

but leaves the current-state information intact (since it may

be needed to compute new states for neighbors of P that have

not ye t been processed). A also marks P to indicate that it

has been processed , and resumes.scanning ~~~. When the scan is

comp lete , every point of ~ is marked , and contains a pair of

state s one of which is the former current state (now previous),

and the other is the new state (now current) , at that point .

A now scans P again , erases all the marks , and returns to its

s tar t ing  point; i t  is now ready to simulate the next transi-

t ion of C. A accepts i f f .  its simulation of C accepts.

If C is not a BCA , A must also visit all the Is

adjacent to E during its scan , check their neighbors , and

rewrite them as non-Is if C would have done so; thus if C is

not a BCA , A cannot be a TBA . On the other hand , if C is a

BCA , the simulator A can be a TBA , and if C is deterministic ,

so is A. Note that a very large number of transitions of A

• is needed to simulate a single transition of C; the simulation

is very inefficient .(Compare the proof of Theorem 3.4.5, which

provided the fastest possible simulation in the one-

dimensional case.) !!



Theorem 5 .3 .3 .  Cellular array acceptors simulate Turing array

acceptors .

Proof: Given a TA , A , with transition function 6 , we define

a CA , C , that simulates A jus t  as in the proof of Theorem

3.4.6. Initially, the upper left cell c0 goes into a special

state representing the in i t ia l  state q0 of A , the symbol ‘t  at

that position , and a direction in which A can move when it is

in s tate q0 and reads symbol a. [This is easy for rectangular

input arrays , where c0 is unique , but it is not so easy for

arbitrary connected arrays; see Section 5.4.] At subsequent

transitions, the special state moves from cell to cell just as

it did in the one-dimensional case , except that four move

directions are now possible . At any step, exactly one cell is

in the special state, corresponding to a position and state

tha t A could have been in at that  step. This process con-

tinues until the special cell’s state represents an accepting

state of A. At this point, the special cell propagages an

acceptance signal to c0, which can then accept, so tha t C

accepts iff. A does. Note that if A is deterministic , so is

C, and if A is tape-bounded , so is C (if we modify the simula-

tion to handle the steps in which A bounces off Is without

requiring * cells of C to change state). As in Theorem 3.4.6 ,

this simulation is the fastest possible , since C requires only

one time step to simulate each time step of A after the first

(except for the propagation of the acceptance signal at the

end).//

• - - V - 
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Theorem 5.3.2-3 immediately imply

Theorem 5 . 3 . 4 .  L (D) C  
= L (D)T; L (D)BC

Note that we have proved these theorems not only for

rectangular input arrays , but for arbitrary connected ones,

except for the problem of c0 in i t ia l ly  iden t i f y i ng  itself ( in

the proof of Theorem 5.3.3) in the arbitrary connected array

case ; this will be taken care of in Section 5.4.

I



5.4 Connected cellular acceptors

To extend the results of Section 5.3 to arbitrary con-

nected arrays, we need to show that, in a DBCA ,

a) The leftmost of the uppermost cells can uniquely

ident i fy  i t se l f .

b) This cell can interrogate all the cells (e.g., as

to whether or not they are in accepting states) and

know when they have finished replying .

We shall, in fact, show that these tasks can be carried out

in time proportional to the perimeter or diameter of the

given array .

Given that (a-b) can be done , it is straightforward to

extend the results of Section 5.3 to connected arrays. The

analogs of Propositions 3.4.2-4 require that (a) holds, while

for Proposition 3.4.1 we require both (a) and (b) (in the

non-SCA case , (b) is not needed , since we can use the expand-

ing-square construction of Section 5.3.1). The slower pro-

cedure based on simulation one step at a time , in conjunction

V 
with scanning and synchronization , also. applies in the con-

nected case, provided that (a) holds. Note that we also need

(b) to prove that a DBCA can tell whether its input array is

rectangular, as pointed out in Section 5.3.1.

Theorem 5.4.1. There exists a DBCA in which the leftmost of

the uppermost cells eventually goes into a special state,

while no other cell ever goes into that state.

Proof (see ( 4 1): Initially, each non-I cell c determines

• —
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which of its neighbors (if any) is I, and then copies the

corresponding information from its non-I neighbors. This

enables c to determine , if it is on a border of ~~, how the

border following algorithm BF (Section 2.6 ) would behave at

it. In particular , c can tell which of its neighbors would

precede or succeed it at each visit of BF to it. If c would

be visi ted more than once by EF , it keeps the information

abou t each visit separate by associating it (e.g., via a

suitable subscript or position in a 4-tup le) with the parti-

cular * neighbor(s) that BF would examine at that visit. For

example, if the neighborhood of c is

a l l

b c d

and borders are always followed by keeping the Is on the left ,

then the predecessor of c with respect to its upper I neighbor

is a, while its predecessor with respect to its lower *

V 
neighbor is d. V

Based on this local analysis , c can tell in particular ,

for each visit of BF to it, whether its predecessor lies

higher or lower than it; in the former case, c associates a

- (minus) with that visit, and in the latter case , a + . In

addition , if c is an upper left corner (i.e., its left and

upper neighbors are both I), it marks itself with U. All of

this initial processing requires only a bounded number of

time steps.

- ~~~~~~~~~~~ 
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We now independently process the + ‘s, - ‘s, and U’s on

each border of ~~~. As already pointed out , even if two borders

pass through a given cell , their processes will not interfere ,

since the marks know which I neighbor(s) of c they are

associated witn. We can thus describe the processing for a

single border B.

In this processing , the - ‘s shift forward along B (i.e.,

in the direction that BF would take), and the +‘s shift back-

ward (in the reverse direction). When a + and a - meet, they

cancel out; and when a + or - hits a U , that U is erased . We

claim that when this process has gone to completion , the + ‘s

and - ‘s will all have cancelled , and all the U’s will be

erased except for those on the highest row of B (if any); this

will be proved immediately below. If B is the outer border

of ~~ , there will exist such U’s on the highest row of ~~~. On

the other hand , if B is a hole border , it is clear that there

cannot exist U’s on its highest row , so that in the case of a

hole border, all the U’s will be erased . Thus when we pro-

cess all the borders of ~ in this way , the only remaining U’s

will be those on the highest row of ~~~.

To prove that all U’s not on the highest row of B will

be erased, consider a U that is not •a highest point of B;

then as we move forward along B from U , we even tu~lly reach a

higher point. Let P be the first such point; then on the

• segment of B between U and P, there are more +‘s than -‘s.

Now consider what happens as the +‘s shift backward and the

~~~~
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- ‘s shift forward . If a - reaches U from its other side , U V

is erased ; but if no such - reaches U, the + at P eventually

reaches U (since only the -‘s between U and P are available

to cancel the +‘s) and erases it. (Note that by definition ,

P must  also be higher than any other U ’ s between U and P , so

that  they too get erased.)

Conversely , let U be on the highest row of B; then as we

move forward along B starting at U, the net number of +‘s can

never exceed the net number of -‘s, so that no backward shif t-

ing + can ever reach U. Similarly , as we move backward

along B starting at U, the net number of - ‘s (which are up-

ward moves when we go backward!) can never exceed the net

number of +‘s, so that forward shifting -‘s can never reach

U. We can think of the +‘s and - ‘s between any two consecu-

tive highest U’s (or all around B, if there is only one

highest U) as constituting a well-formed parenthesis string ,

which cancels itself out completely in the course of the

shifting; see Cd) at the end of Section 3.4.3.

As described up to now , the cancellation process leaves
p

the highest U’s intact, but these cells can never know that

they are highest U’s, since no matter how long they wait,

they can never know that a + or - from a very distant higher

point is not still on its way toward them . In order to allow

these U’s to discover that they are highest, we must make a

small modification in the cancellation process . When a + - V

and a - meet, instead of cancelling , they turn into “ghosts ” ,

denoted by +‘ and - ‘ , which continue to shift in the same 

_ _ _
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directions . When a + ‘ and a - ‘ meet , they simply pass each

other; but when a + ‘ meets a - , the + ‘ is erased (without

a f f ecting the - ) ,  and when a - , meets a + , the - ‘ is erased .

It is easily seen that , on any segment of L~ bounded by two

highest U ’ s , at least one -4- ’ and - ‘ (name ly ,  the last one s to

be created) wi l l  not be erased , and these wi l l  reach the U ’ s.

Th us when a U has been hit  by both a + ‘ and a - ‘
, it knows

that no + or - can ever hit it , so that it must be a highest

U. To i l lus t ra te  this process , we show the successive shif t-

ing and cancellation steps for  a simple example :

Step

1 U 1 - - + - + — - + + + 02
2 - — ‘ + ‘ — ‘ — + +

3 — — ‘ — , 
+ ‘ +

4 — — ‘ + ‘ +

5 - +

6 -i- ’ — ,

(All succeeding steps , the + ‘ moves left to U1, and the - ‘

moves right to 02 . )

Concurrently with and independently of all the above ,

any cell c that is a lower right corner (i.e., whose lower

and right neighbors are Is) marks itself with L. By a ’pro-

cess analogous to that described for the U’s, the L’s in the

lowest row of B identify themselves. (Note that , like the

U’s, they can exist only on the outer border B0 of E , not on

-
- 1  
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hole borders.) When an L has identified itself , it sends out

a s ignal  - that travels clockwise around B0 (i.e., with the

Is on the left , starting with the U below the L) . If Cl. hits

another L, it is erased . If it hits a U which has not yet

been iden t i f i ed  as hi ghest , it waits  un t i l  that  U is e i the r

erased or found to be highest. In the former case , the signal

continues to travel.  In the latter case , that U must be the

leftmost of the uppermost points of E , since it is the first

of the highest U’s that was reached by a starting from a

lowest L. In other words , that U is the desired c0.

The entire process of uniquely identify ing c0 takes time

proportional to the perimeter of . In fact,the initial

steps take a bounded amount of time; the identifications of

the highest U’s and lowest L’s take times that are fractions

of the perimeter; and the identification of c0 using c~ takes

time less than the outer perimeter. // 
V

In proving the analogs of Propositions 3.4.1-4 for non- 
- •

BCA ’s, we can first identify c0, e.g., by creating a square

that contains E (see Section 5.3.1), then scanning the square

V row by row until the leftmost uppermost non-I is found . We

can then synchronize the square and initiate the simulation ;

the proofs now proceed as in Section 5.3.1. The time re-

quired , as pointed out there , is proportional to the (greaLest)

diameter of E.

For BCA ’s, the simulation and the process of identifying

can proceed concurrently. (We can do this for non-BCA ’s

4V 
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r also , if we do the identification of c0 on a copy of the

original ~~, while allowing another copy of E to grow , if

• necessary, under the simulation.) In Proposition 3.4.1 , when

c0 has identified itself and has also (later or already)

accepted in the simulation , it sends out an interrogatory

signal that generates a reply as in the theorem to be proved

next (or, for non-BCA ’s, it can use the same method as in

Section 5.3.1). In Proposition 3.4.2 , any accepting cell

sends out an acceptance signal; when it reaches c0 (or when

identifies itself and finds that this signal has already

reached it) , c0 accepts. In Proposition 3.4.3, only c0 can

accept , and only after it has identified itself. In Proposi-

tion 3.4.4 , when c0 accepts (or identifies itself and finds

it has accepted) , it sends out an acceptance signal that

causes every other cell to accept. The time required for

transmission of these signals is at most the diameter of E;

as shown in Section 2. 8, this is less than the perimeter of

E.
V 

We conclude this section by proving

Theorem_5.4.2. There exists a DBCA with a distinguished cell

C0 such that  c0 goes in to a special state after it has sent

out a signal and received a reply from the cell farthest from

• it.

Proof: If c0 is the upper left cell of a rectangular array ,

this is easy : c0 sends out its signal , which propagates

from cell to cell; i.e., each cell copies the signal from its

- •  
- 
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neighbors. The lower right cell is uniquely identified by

having Is below it and on its right , and this is the cell

farthest from c0. When this cell receives the signal , it

emits a reply, which propagates from cell to cell until it

reaches c0. When c0 receives the reply, it knows that the 
V

farthest cell has received its signal and replied , and can go

into the special state .

For connected arrays , we could use the fac t  that  DBCA ’s

can simulate DTBA ’s, as was proved in Section 5.3.2. Cell c0

could thus initiate a DTBA simulation that systematically

scanned the array (see Theorems 4.4.2 and 4.4.5), and when

finished , erased all its marks and returned to c0; at this

point, c0 could accept. However, this approach is very slow

(compare Section 5.5). Instead , we give a construction that

makes extensive use of the DBCA ’s parallelism , and requires

only time proportional to the intr insic diameter of the array .

First , c0 sends out its signal s, which propagates from

cell to cell. If a cell c receives s from exactly one of its

neighbors , c stores the direction of that neighbor (as well  V

as copying s). If c receives s from two or more neighbors ,

it stores only one of their directions, according to an

arbitrary preference ordering (e.g., L,R,U ,D). Note that c

receives s after a number of time steps equal to c ’s city

block distance from c0.

When a cell c receives a from all of its (non-I) neigh-

bors, so that it has no neighbors that have not yet received

________
.~;
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s , the dis tance of c from c0 must be a local maximum . Such

c’s initiate a reply signal r, which will propagate back to

c0 along the paths indicated by the directions stored in the

cells; in other words , if c has received r , its neighbor c ’

accepts r from it only if c ’ is the neighbor of c in the

direction that c had stored . Moreover , if c ’ has two (or

more) neighbors, say c1, c2, for which it is the stored-

direction neighbor , it accepts r only after r has arrived at

both c1 and c2.

It is easily seen that the stored directions define a

directed spanning tree T of the array , rooted at c0. The

reply signal r is initiated by the twigs of T, and passes

through a node of T only when it has been received by all

sons of that node . Thus the time required for r to reach

is equal to the longest distance from c0 to any twig of T,

i.e., the longest distance from c0 to any point of E , which is

at most the diameter of 
~.//

To apply this result to proving the analog of Proposition

3.4.1, we change the reply signal from r to r ’ if it ever en-

counters a non-accepting cell. Thus if c0 receives r, every

cell of the simula tion has accepted , and c0 can accept; while

if c0 receives r’, it can try again later (the simulation pro-

ceeds concurrently with the signal and reply propagation).

If every cell in the simulation does eventually accept, c0
V 

will eventually receive r (since accepting states never change) ,

V 

- -
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and will accept*.

The analogs of Propositions 3.4.1-4 shows that the three

definitions of acceptance are still equivalent even for con-

nected arrays. We shall use the upper-left definition from

now on, and shall always assume that c0 is uniquely marked .

The language L(C) of arrays accepted by C, and the class

L
(D) (B)C of all languages accepted by (D) (B)CA ’s, are defined

just as in the rectangular case (Section 5.3.1).

*The same argument is used to prove that a DBCA can verify
its rectangularity : the reply r becomes r’ if it encounters
a concave corner; if c0 receives r, there are no concave cor-

- ners. Note that a DBCA could also verify rectangularity by
simulating the proof of Proposition 4.2.1, but this would be
very slow.

- 
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5 .5  Speed comparisons

As we have just seen , CA’s can simulate TA’S in essentially

real time , so that any language can be accepted by a CA at

least as fast as it can be accepted by a TA (ignoring the

acceptance propagation steps). On the other hand , some

-. languages can be accepted by CA’s much faster than by TA’s.

In this section we discuss comparative acceptance speeds for

two-dimensional TA’s and CA’s.

Let t E l  denote the number of elements in the array E , and

let <~~~- denote the number of border points of E. If E is

rectangular . say m by n, we have ~E J  = mn and < E >  2 (m+n -2)

(provided m , n � 2); it follows that ~~ < <E> 2 < l 6 l E ~ . In

the nonrectangular case, let R(E) be the framing rectangle of

E (see the appendix to Section 5.3.1), and suppose that R (E)

is h b y w. Then E has at least two border points (run ends)

in each row of R(E), and at least two in each column of E , so

that <E> ~ max(2h ,2w) h+w . On the other hand , ~ ~ hw , so

that here again we have ~~ < ~E>
2. (In this case we cannot

expect to show cE> 2 < k~~E J for any k, since <E> might be as big
V 

as j E t . )

For any acceptor A (or C), suppose that for all E there

exists a function f, taking natural numbers into natural num-

bers, such that if A accepts E at all, it does so in at most

f ( < E ) time steps . We then say that A accepts in perimeter

time of order f. For example , if f is linear, we say that A

accepts in perimeter time; if f is quadratic , we say that A

accept. in perimeter-squared time; and so on. Similarly , if

-— 
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there exists a function f such that A accepts any E , if at

all , in at most f(<E> ) time steps , we say that A accepts in

area time of order f. Note that by the remarks in the preced-

ing paragraph , if A accepts in area time , it accepts in perimeter—

squared time (and only if , in the rectangular case).

It is easily seen that, except in certain special cases,

no TA can accept in faster than area time , and no CA can

accept in faster than perimeter time. Indeed , if A accepts E

in t < jE j time steps, it cannot have seen all of E , and so

accepts any array that matches E in at most t positions , and

is otherwise arbitrary. Similarly, if C accepts Z in

t < <E>/2 time steps, the state of c0 at step t cannot depend

on the initial states of cells farther than t (in city block

distance) away. For an rn-by—n rectangular array, the farthest

point from c0 (the lower right hand corner) is at distance

m+n-2 = <E>/2; hence the state of c0 at step t cannot depend

on this point. Thus C accepts any array that matches E out to

city block distance t from c0, and is otherwise arbitrary*.

*For arbitrary connected arrays, the farthest point may be much
less than <E> away from c0, so that nontrivial recognition of
certain classes of such arrays in time of order less than <E>
may be possible; but as the rectangular case shows , there do
exist classes of arrays for which O(~ E> ) is a lower bound. On
the other hand,aswesaw in Section 2.8, the intrinsic diameter
of any L (z the greatest possible length of a shortest path in
E between any two points of E) is at most half the total pert~meter of E ; thus if acceptance time is O ( < E > ) ,  the state of c0
can depend on the state of any cell in E , however distant, so
that there is no class of arrays that requires a lower bound
higher than O(<E ). 

- --- ~~~~~~ - - 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



• We may thus conclude that for “interesting ” array languages

L , the time required to accept any EL L must be at least I E I

for TA’s, and at least <1>12 for CA’s (or O(<E>), in the non-

rectangular case). Note that the “speed limit” for acceptance

by two-dimensional CA’s is much less than that for TA’s (in

fact, the latter is proportional to the square of the former),

unlike the case in one dimension where both speed limits were

the same (namely, joj ).

To illustrate acceptance in minimal time by TA’s and CA’s,

we may again consider (as in Section 3.4.3) the language L~

consisting of all rectangular arrays in which a particul.ir

vocabulary symbol x never appears. A DTBFSA can accept L~

in area time by systematically scanning E row by row ; if it

finds an x , it stops and enters a non-accepting state ; if it

completes the scan without finding an x, it accepts. A BCA

tnat accepts L~ is defined as follows: Lie bottom cell of

each column initiates a signal y that propagates upward through

non-x ’s, but is stopped by x ’s. The rightmost cell of the top

row initiates a signal z that propagates leftward through

y ’s. If z reaches c0 (at the left end of the top row) , it

accepts. Evidently this happens if f. no column of I contains

- an x. The time required for acceptance , on an rn-by-n rectan-

gular array, is just n-l(for the propagation of the y ’s up the col-

umns) +(rn-1) (for the propagation of the z’s across the top

row), which is exactly <1>12 . Thus L~ is an ex&a~1e ~.i~ioru

CA’s accept much faster than TA’S.

Acceptance by CA’ S in perimeter time is of particular

- - 
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interest, since this is (on the order of) the fastest time

possible. In the following subsections we give a number of

examples of perimeter-time acceptance algorithms for CA’s.

These algorithms illustrate the value of two-dimensional CA’s

us fi~st devices for array recognition.

It is straightforward to establish analogs of the upper

bounds on acceptance time , discussed at the- end of Section

3.4.3 , for two-dimensional TBA ’s and BCA ’s; the details will

not be given here .

~~~
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5.5.1 Some efficient acceptance algorithms for rectangular V

arrays

In this section we describe several perimeter-time al-

gorithms for acceptance of specific rectangular array

languages by DBCA ’s. [Note that for an rn-by-n rectangle , the

perimeter 2 (ni+n—2) is just twice the city block diameter.~
- Some perimeter-time algorithms for connected array languages

will be presented in the next section .

In Section 3.4.4 we gave a number of efficient al-

gorithms for string language acceptance by one-dimensional

DBCA ’s. These algorithms required times on the order of the

string length . As an immediate application of these algorithms

to rectangular arrays, consider the set of arrays each of

whose rows belongs to a given string language , e.g., to the

palindromes or well-formed parenthesis strings. We can accept

such a set of arrays in O(perimeter) time as follows:

a) Each row simulates a one-dimensional DBCA , with

distinguished cell at its ‘left end , that accepts

if f. the row belongs to the given string language .

This requires O(array width = string length) time.

b) The left-hand column simulates a one-dimensional

DBCA , with distinguished cell at the top, that

accepts if f. the entire column consists of accept-

ing states of the row DBCA’s. LOnce the left cell

of a row DBCA accepts, that cell marks itself per-

manently, and the column DBCA accepts if f. the

entire column is marked.] This can easily be done



in O ( a r r a y  h e i g h t)  time , once the rows have a l l  
V

accepted . [The bottom left cell , when its row has

accepted , initiates a signal that travels upward

through acceptance-marked cells; if it reaches the

top, the top cell accepts.]

Thus the total acceptance time is O(width)+O(height)=O(diameter).

An exactly analogous scheme can be used to accept arrays whose

columns belong to a given string language .

We next consider languages defined in terms of the

number(s) of occurrences of particular symbols. For example ,

let us consider arrays of 0’s and l’s, and consider the

language consisting of all such arrays in which the number of

l’s is odd (or even), or in which the number of l’s equals (or

exceeds) the number of 0’s. In Section 3.4.3 we saw that the

analogous one-dimensional languages could be accepted by con-

verting the number of l’s to a binary number , stored in the

leftmost log2(string length) cells , since we can then check

whether the least significant bit is 0 or 1, to determine the

parity of the number of l’s. Similarly, if we simultaneously

convert both the number of l’s and the number of 0’s to binary

numbers, both stored in the leftmost cells (without inter-

fering with one another), we can do a bit-by-bit comparison of

these numbers to determine which of the numbers is greater , or 
V

whether they are equal. The binary conversion and comparison

processes both take only O(length) time.

In two dimensions, we can similarly convert the num-

- 
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ber(s) of l’s (and 0’s) on each row to a binary number. [We

assume here that the rows are at least as long as the columns ;

this assures that the final binary numbers for the entire

array , which are O(loq2(area)) bits long , will fit on the

rows , since row length .~(area)
1
~
’2 > log2 (area). If the rows

- 
are shorter than the columns (which can be verified in

O(per imete r)  time ; see the beginning of Section 5.5.2), we

use an analogous process with the roles of columns and rows

interchanged.) We must now add up these numbers to obtain a

total sum , say on the top row. To do this , let us first mark

the odd-numbered and even-numbered rows distinctively (this

takes O(height) time , using a signal that travels from bottom

to top and alternates between two values; see the beginning

of Section 5.5.2). We now simultaneously add each even-

numbered row to the odd-numbered row above it; this takes

O(log width) time (see the next paragraph for the details).

When the additions are complete , we shift the sums upward

until they are packed into the upper half of the rows; this

takes (height/2) time . We now again simultaneoulsy add even-

numbered rows to the odd-numbered rows above them , which takes

O(log width) time. The entire process is repeated , until

- finally the sums corresponding to the top and bottom halves

of the array , in the top two rows, are added to yield the

— final sum. The sums never get longer than

log(area) £ log (width2) 2log (width), which is O(log width).

The total shifting time is height/2 + height/4 + ~~~
.. = O(height).

The number of times additions are performed is O(log height) ,



and the additions take O(log width); thus the total V

addition time is O(log height x log width) ~ O(log
2width) O(width).

The entire processing time thus consists of O(width) for the

row additions, O(height) for the upward shifting of rows, and

< O(width) for the additions of rows -- a total of
O(height) + O(width) = O(perimeter) time steps.

The addition of pairs of rows proceeds straightforwardly.

Each cell (say the kth) on an odd-numbered row contains a

pair of bits (ak,Bk); initially xk is the kth bit of the sum

on that row, and Bk = 0. The cell below it on the even-

numbered row also contains a pair of bits (cz~ ,B~ ) with = 0.

At the first step, the cells on the even rows go into “blank”

states. The new states of the cells on the odd rows are deter-

mined as follows: 
-

Old cLk New 
~k 

New Bk

0 0 0 0

o 1 1 0
1 0 1 0
1 1 0 1

At subsequent steps, the new states of the odd-row cells are

determined analogously:

Old Old 8k-l New ak New 8k - V

0 0 0 0
0 2. 1. 0
2. 0 1 0

V~~~~~~~~~_V_V_~ - - V VV V~ V4 3V~~VV~~~ V 
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To insure that the additions are all done simultaneously 
V

~is soon as the rows are packed , we can assume that the lowest

non-blank row is specially marked; this is trivial to do

initially, since the bottom row has #s below it, and the marks

- can be inherited each time the lowest non-blank row is added

to the row above it. That row can initiate a signal that pro-

pagates upward through non-blanks. When the signal reaches

the top row , it knows that the packing is complete , and can

initiate a synchronization process that causes all the pairs

of rows to add at once. The signal propagation and synchroniza-

tion steps , in preparation for the ith set of additions , take

O(height/21~~ ) time, the same as the time for the preceding

shifting and packing , so that our time order computation is

not a f f ected .

The new shifting and packing can begin as soon as the

first step of the current addition is performed ; but to insure

that this addition is finished before the next one is initiated ,

we can proceed as follows: Assume that the cells containing

bits of a sum are all marked , whether the bits are l’ s or 0 ’ s;

this can easily be done when the initial row sums are

created , and can be preserved as part of the addition process.

- Concurrently with the addition , we can synchronize the marked

cells on the lowest non-blank row; when the synchronization is

- done , we know that the addition is also (nearly) done , and I
can initiate the upward signal that will indicate completion

of the packing. (A simpler method of counting l’s in a rectangular 
~~V~~~

V V
~ 

V

array is described in [14] )
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As a gene ra l i za t ion  of counting l’ s , we ca n count

occurrences of any given local pattern , e.g., - A

uniquely defined cell (such as the upper left cell) of each

such pat ter n first identifies itself; this can evidently be

done by examining states of neighbors out to a bounded dis-

tance , and takes a bounded number of time steps. We then

count the number of cells that have identified themselves in

tnis way , and can then apply any desired tests or comparisons

to these counts (e.g., parity , majority , etc.). We can also

compute geometrical properties of the array that can be de-

fined in terms of local patterns. For example , in an array

of 0’s and l’s, the set of l’s is a union of non-touching

rectangles iff. it has no concave corners (compare Proposition

5.3.1), and this can be detected by marking concave corners

and detecting the absence of a marked cell. Moreover , such a

set of l’s is a single rectangle iff. it has exactly four con-

vex corners, and this too can be easily determined by detecting

and counting the convex corners. To tell whether the rectangles

are (e.g.) squares, each northwest corner (= 1 with l’s as right

and lower neighbors) can compare the numbers of upper and lef t-

hand edge points of its rectangle (we mark these points and

shift the marks leftward or upward (respectively) through l’s

until they reach the corner; if they stop coming at the same 
V

time, that rectangle is ~ square). We can then mark the north-

- 

. 

west corners of squares, and subsequently count them.
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As another example , the genus of an a r ray  of 0’ s and

l’ s (essentially the number of connected components of l’ s -

minus the number of components of 0’s; see Section 2. 7 ) is

equal to V—E+F , where

V is the number of l’s

E is the number of ~ ‘s and 11’s

F is the number of

We can count these types of patterns (independently) , and com-

bine the counts (subtraction can be done analogously to

addition) to compute the genus . We can thus , in particular ,

determine whether the array has some given genus , such as zero

or one. All these processes take times proportional to the

array perimeter or diameter. We can tell when the counting is

complete by, e.g., sending a signal from the lower right corner;

when it reaches the upper left corner , we know that diameter time

(or sor1~e multiple 0± 1L , it we use a slow signal) has passed .

It is more complicated to count the connected components

in an array of 0’s and l’ s. In the following paragraphs we de—

scribe a method , based on [15-16], of doing this in O(perimeter)

time. The method makes use of a “shrinking ” operation that re-

duces each component of U ’s or l’s to a single point. We

first describe this operation , and then show how it can be

used to count components of l’s or D’ s -- for example, to de-
termine whether or not the l’s are connected .

Let ~‘ denote the operation that - 
j

I

V T~ i i  I~T T I  V —



a) Changes a cell from 1 to 0 if its right and lower

neighbors are both 0’s

b) Changes a cell from 0 to 1 if its right, lower ,

and lower-right diagonal neighbots are all Ps

and leaves all other cells unchanged. In other words , ~‘ de-

letes upper-left convex corners from the set S of l’s, and

fills upper-left concave corners. If we are given the neighbor-

hood

PA
BC

of the point P, then we change P from 1 to 0 if f. A=B=l , and

change it from 0 to 1 iff. A 8 C 1 .  Equivalently , it is not

hard to show that

‘V(P) l if f. P+A=2 , P+B=2, or A+B+C=3

Note that ~i’(P) depends only on two neighbors and one diagonal

neighbor of P; it requires two time steps to compute. We

could have defined ‘f’ using other pairs of neighbors (right and

upper, left and upper , left and lower) rather than the right

and lower neighbors; analogous results can be obtained for

• these alternative definitions .

We will next show that, in a sense to be defined more V

precisely below, applying ‘1’ to an array of 0’s and l’s pre-

serves the connectedneas of both the 0’s and the l’s. Our de- 
- *

finition of ‘V assumes that we use 4-connectedness for the l’s

and 9-connectedness for the 0’s. If we want to use the

~ V VV* VP V• -V

~~~~~~~~~~~~~
— -

_ _
V
~~ 

V 

V



* opposite types of connectedness, we should define ~ to change

P from 1 to 0 if f. A=B=C=0 , and to change P from 0 to 1 if f.

A=B=l. Readily, this is equivalent to ~‘(P)=l iff. P+C=2 or

P+A+B.~2.

For brevity , denote ‘V(P) by P’. Let S and 5’ be the

sets of l’s before and after a given application of ‘1’, and let

~ and ~~
‘ similarly be the sets of 0’s. For any set T, let

and T6 be the sets of points of S’ and of ~~
‘ , respectively ,

that either lie ~n T, or have points of T as right and lower

neighbors. We shall now prove that if U is a component of S,

then Uj is a component of S’, and if V is a component of ~~ ,

then V~ is a component of ~~~~
‘ . [We assume here that U and V

consist of more than one point; if not, it is clear that these

points disappear under ‘Y, and that Uj and V~ are empty.]

Nc te first that if P’ is in Uj but not in U , we have

P’=l but P=0 (since P has points of U as right and lower

neighbors, if it were 1 it too would be in U, since U is a com-

ponen t of l ’s). Hence P must have a neighborhood in which

A=B=C=l. Since A=l and C=l , we must have A’=l, and similarly

B’=l; thus P’ has neighbors A’ and B’ that are both in Uj and

U. It follows that to prove the connectedness of Uj ,  we need

only show that any two points that are in both U and Uj have a

path joining them in U~ .

Let Q,R be two such points; let p be a path joining

them in U (p exists since U is connected) that is as short

as possible ; and let X be any point on p such that X’mO . (If

V .~~~~~~~~~~~ . V V~~ V~ ~~V L ~~~~~~~~~
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I-
there is no such X , p is a path in U~ and we are done.) Thus

X=l and X’=O , so that the neighborhood of X is of the form

AB
Cx0
0

Since p is as short as possible, it must pass through both B

and C; hence B,C are in U , so that B=C=l. It follows that

A’=B’=C’=l , so that A ’,B’ ,C’ are all in Uj. We can thus re-

place X by A on p, and by doing this for every such X, we

obtain a path p ’ in Uj from Q to R, as desired. Thus U~ is

connected.

We next show that U~ is a component of S’ -- or,
equivalently, that any point of S’ adjacent to U~ must be in

U~. Suppose first that the given point P is in both S and S’,

i.e., P=P’=l. If P is adjacent to U, it is in U, hence in

and we are done. Otherwise , P must be adjacent to some Q~S

for which Q’~~S’ is in U~ . The neighborhood of P must thus

look like

V PR PQA
QA or RBC
BC

where A ,B,C are in U (they are all in S since Q=0 but Q’=l; 
V

and A ,B are in U since Q’ is in Ui). Since Q—0 but P’=l , we

cannot have RaO ; but if R—l , P is connected to U and so is in

U. Similarly , if P is in ~ and S’ , i .e . ,  P~ 0 but P’ =l , then

P has a neighborhood of the form

xi
ZPA
WBC

_ _ _ _ _  
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• 
with A ,B,C in S. If A or B is in ~~~ then it is also in U ,

so that P is in Uj. Otherwise , X or Z must be in Uj, and if

P~U~ this means that W or Y must be in U; but then A ,B,C are

in U, so that P is in U~ , contradiction . Thus Uj is a component.

Note finally that if U has more than one point, Uj

cannot be empty ; for example , if P is the leftmost of the

uppermost points of U, then P’=l (since either its right or

lower ne ighbor is in S), so that P is in U~ . [By the same

argument, if V is a component of ~ and has more than one

point, V~ cannot be empty.]

We now turn to the proof that if V is a component of

— 

~~ , than V~ is a component of S’. Let p be a path in V that

is as short as possible , and let ~ be a run of points of p

that are not in ~~
‘ , but such that the points of p immediately

preceding and following ~ are in ~~~
‘ . Then the neighborhood of

V 

~ must be of the form (e.g.)

A B C
D~~~~s

E F ~~~~s s
G~~~s s

V H s s

where the s’s are in S. Thus D and F are in ~~~~
‘
, so that if the

point of p preceding ~ is E or G, and the point following ~
is A or B , we can replace ~ by the subpath F,D, which lies in

~~~
‘ . On the other hand, if the precedin ’ point is H, we have

G’~~~’,and if the following point is C, we have B’~~~’, so that

in these cases ~ can be replaced by G,F,D, by F,D,B, or by

V ~~~~ ~~~~~~~~~~~~~~



G,F,D,B, all in S ’ . It follows that any (shortest) path in V

can be converted into a path in V6. Thus any two points in

are joined by a path in V6, so that is connected.

To show that V~ is a component, we prove that any

point of ~~
‘ adjacent to V6 must be in it. Let the given point

P be in S; its neighborhood must then be

x

YPA
B

where A ,B are in ~~~~. If A or B is in V~ , they are both in V ,

so that P is in V~ . Otherwise , X or Y must be in V~ , say X ,

so that X’=O; but since P=l , this means that X=0 , so that

X is in V , and this implies A ,B in V, proving P V~ . On the

other hand, let P be in ~~; then if it is adjacent to V, it is

in V, hence in V6, and we are done. Suppose it is adjacent

to a point Q of V6 that was not in V , so that its neighborhood

looks like

P PQA
V QA or B

B

where A and B are in V; then P is also in V , hence in V~ .

Finally, we show that if U is adjacent to V , then

is adjacent to V~ . We recall (Section 2.6 ) that U adjacent

to V implies that U surrounds V or vice versa; suppose the

former . Let P be the leftmost of the uppermost points of V,

so that P’s upper neighbor Q is in U. Then readily P’~ S’ and

Q’E  ~~
‘ , so that P’EU~ and Q’4~V~.



For any component U of S, let x~ and y~ 
be the co-

ordinates of the leftmost row and uppermost column that contain

points of Ii. Let P be any point of U at maximum city block

distance from (x~~y~ ). Thus the right and lower neighbors of

P cannot be in U , hence are in ~~ , so that P’=O . Thus applying

~ decreases the maximum city block distance of U from (x ,y
~
).

t~o point of U~ can lie to the left of x~ or above

since a point to the left of x~ cannot be in u or have its

lower neighbor in U, and a point above y
~ 

cannot be in U or

have its right neighbor in U. On the other hand , any leftmost

uppermost or uppermost leftmost point of U must be in Uj (as

long as U has more than one point), since such a point must

have either its right or lower neighbor in U. Thus x
~ 

and

are still the leftmost and uppermost coordinates for Uj, as

they were for U.

The remarks in the last two paragraphs imply that when

V i is repeatedly applied , the lef tmost and uppermost coordinates

V (Xu~Yu
) of any U remain unchanged , but the city block distance

V of U from (Xu sYu) keeps decreasing . This means that U must

-~ 

eventually shrink to a single point, which must evidently

be the point (x
~~

y
~

)
~ and this point then vanishes when ‘V is

- 

applied again. The number of steps required for this to happen is

at most (twice ) the original maximum city block distance of

U from 
~~~~~~~~~~~~~~ 

Analogous remarks apply to any component V

of ~~~. (The only exception is the background component, which

is not surrounded by any component of U.] Note that the time

*Sjnce ‘V takes two time step. to apply ; we ignore this factor
of 2 below.

VV V*~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ V *~~W~
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required for a component C to shrink to a point is at most the

diameter of C’s framing rectangle , which is less than the

diameter of ~~~.

Using Y , we can design a DBCA that counts connected

components of l’s or 0’s. We apply ‘+‘ repeatedly ; this shrinks

every connected component, except for the background component

of D’ s, to a single point (which then vanishes), in time less

than the diameter of E. When single-point components are

created (or initially present), we can easily detect them ,

since they are l ’s all four of whose neighbors are 0’s, or 0’s

all eight of whose neighbors are l’s. Thus at the same time

that ~ ann ihila tes them , we can replace them by special marks,

say I and 0, which can occupy a cell without interfering with

the processing of the l’s and 0’s by ~‘ . We can now count these

special marks, as described earlier in this section : add them

up in each row, then add the row sums. (We know that O(diameter)

time steps suffice for the I’s and 0’s to have all been

created, and to have been shifted to the left ends of their

rows and counted there; thus after O(diameter) time steps we

can safely initiate the process of adding the row sums.] This

gives us counts of the numbers of components of l’s and 0’s in

the original E (except for the background component of 0’s).

Thus we can accept Z if f., e.g., these numbers have given

values or given parities , e . g . ,  if they l’s are connected , or

if there are no holes in the l’ s C— non-background components

of 0’ s) .  [Acceptance based on comparison of these numbers, V

- 

- 
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e.g., more components than holes, can be done without using ‘Y,

since the difference between the number of components of l ’s V

and the number of non-background components of 0’s is just the

genus , which can be computed more simply.]

We can also use ~‘ to define DBCA acceptors for various

other languages. For example, to accept if f. the l’s consist

of a single closed curve, we can first check the fact that

every 1 has exactly two l’s as neighbors,which implies that

the l’s are a union of non-touching simple closed curves

(Section 2.3); and we can then check that the l’ s are con-

nected (or equivalently , that they have exactly one hole).

V 

~~~~ -
V V V$ 
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5.5.2 Some efficient acceptance algorithms for connected
array! 

V

In this section we present some perimeter-time algorithms

for DBCA acceptance of specific connected array languages. In

particular, we may consider languages defined by the geometrical

properties of the array ~ (of non-#s) itself. As one example ,

in Section 5.3 we showed how a DBCA can accept ~ iff. it is

rectangular. It is also easy to define DBCA acceptance al-

gorithms for rectangles having particular properties, e.g.,

side lengths odd or even , height equal to (or greater than)

width , etc. For example, to detect evenness of rectangle

width , the upper right corner sends a signal to the upper left

corner (C 0 ) ,  and the signal alternates between two states, say

i and B (ie., if a cell’s right neighbor is a, the cell be-

comes B, and vice versa), where the initial signal is a; if
t

receives B, it accepts. To detect the fact that height is

greater than width , the lower right corner sends a signal to

that travels diagonally, i.e., alternately upward and left-

ward (if a cell’s lower neighbor is a, the cell becomes B; if

a cell’s right-hand neighbor is B, the cell becomes a). If

an a has a * on its left, it becomes a y; this y moves upward

one step and becomes 6; 6 moves upward until it reaches c0,

which then accepts. If y reaches c0, the height and width

are equal.

To determine whether or not E is simply connected

(i.e., has no holes), we can proceed as follows (4 ]: In the

proof of Theorem 5.4. we showed that the distinguished cell 
V

V V
T~~

V
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c0 of Z can identify itself in time on the order of the 
V

outer perimeter of E. (The processes on inner borders may

still be going on, but they will not lead to anything, and

can safely be ignored.) The outer border of E then marks it-

self by simulating a border-following process starting from

c0; this again takes outer perimter time. [A cell c may be

on both the outer border and an inner border, but this can be

detected by checking whether the BF simulation has made use

of all the I neighbors of c; if not, the mark is modified to

indicate that c is on more than one border.] After the mark-

ing is completed, each outer border cell c1 sends out a

signal that moves rightward along its row until it reaches

another border cell c2 and hits a I ;  this must happen in a

number of time steps at most equal to the width of E , which

is evidently less than half the outer perimeter. If c2 is

marked (i.e., is on the outer border), the signal is erased.

If c2 is not marked , or has a modified mark , the signal gen-

erates a reply that moves back along the row until it reaches V

- - V 
C1. [If E has a hole, this must happen. Indeed, let P be a

hole point that is as far to the left as possible; thus P’s

left neighbor Q is a hole border point. If we move leftward

• from Q through non-Is until we hit a I, the last non-I must

be an outer border point, since there are no hole points to

the left of P. Thus if E has a hole, some outer border point

must have the property that when we move rightward from it

through non—Is until we hit a I, the last non-I must be a 
V

hole border point.] When this happens (or if c1 had a modi-

~
V V *V
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• 

- _ _ _ _ _  ~~~~~



fied mark to beg in wi th) , c1 generates a signal that travels V

around the outer border to c0. If c0 receives such a signal ,

it knows that ~ is not simply connected. If it fails to re-

ceive such a signal within (say) twice outer perimeter time

after the marking of the outer border was completed (it can

determine this time by sending a half-speed signal around the

outer border), it knows that ~ is simply connected , and can

accept. The entire process takes O(outer perimter) time.

To determine whether L is a simple arc or simple

closed curve, c0 identifies itself and marks the outer border.

When this is finished , each outer border cell verifies that

it has no unmarked neighbors , and at most two marked neighbors .

If a cell fails to verify this, it sends a signal to

which then knows that Z is not an arc or curve . If this signal

does not arrive within outer perimter time, c0 knows that Z

is an arc or curve. If two border cells have only one neigh-

bor, ~ is an arc ; if all of them have two neighbors , ~ is a

curve.

As we saw in the proof of Theorem 5.4.2 , the distin-

guished cell c0 of a DBCA can send out a signal and receive

a reply from every cell in O (diameter) time, hence in

O(perimeter) time. This reply can inform c0 about the pre-

sence or absence of specific symbols, or local patterns, in V

E. We can also determine (e.g.) the parity of the number

of these symbols; in fact, each cell can receive parity in-

formation from its children on the spanning tree and compute

its own parity (i.e., the parity corresponding to the set of

- —.~~



cells below it in the tree) for transmittal to its own

parent .

Counting specified symbols (or local patterns) is

more difficult. For a non-BCA there would be no problem ;

we could simply construct a containing rectangle and use the

methods of Section 5.5.1 to count the various types of non—Is

in that  rectangle. For a BCA , we can use a different al-

gorithm that once again involves constructing a spanning tree.

In such a tree, we know that each node has degree (number of

non-I sons) ~ 3, since a node has only four neighbors , and

one of them must be its father node . [The root node of the

tree has no father , but since it is the upper left corner of

~~ , it has at most two non-I sons.] In the following paragraphs

we describe an algorithm in which each node of the tree

successively outputs (to its father node) the base-4 digits of

the number of nodes in its subtree, least significant digit

first. The root node , which has no father, can shift these

digits down the tree so that they are stored along a longest

path* . [Let h , the tree height , be the length of such a

longest path ; then readily the total number of nodes in the

tree is at most (l+3+3 2+...+3~
1) < ~h+l , so that there is room

to store this number along the path.]

*Thjs shifting is understood to be independent of, and not to - 

V

interfere with, the upward shifting of the digits to be de- V

V 
scribed below.

— 

—
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p
The basic idea of the algorithm is as follows : We

assume that the tree has been constructed , so that each cell

knows which of its neighbors are its father and its sons. The

states of a cell are triples of the form (~~,B,y) , where

0, 1 , 2 or 3 represents a sum digit (to base 4)

B 0, 1, 2 or 3 represents a carry digit. [Since a

cell has at most three non-I sons , each of which

is sending it a base—4 digit (~~ 
3) , and since its

own digit (the carry digit from the previous

addition) is also 3, it can add these digits

and obtain a sum ~ 4.3 = 12 = 3.41 + 40 this sum

can thus be represented using a pair of base-4

- -  1 0digits, 13•4 + a •4 .3

y = indicates the type of tree node and the action to

be taken with respect to the addition process;

the significance of y will become clear in the V

course of describing the algorithm .

At the first step, each cell changes to state (l,0,t)

if it is a twi g node , and (l ,O , t )  if it is not. At each

subsequent step,

1) A cell in state (1,0,E) remains unchanged unless

all, its sons are in states with third terms t or

v; it then changes to (l ,0,u). (Informally , the

u indicates that the cell is ready to add its sons ’

inputs; the v indicates a cell that has just

added its sons’ inputs.]

I
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2) A cell in state (s,0,u) changes to state (q,p,v),

r where 4p+q = s+ (the sum of the digits shifted up

from the cell’s sons) . [It can be shown , by in-

duction on tree height, that whenever a cell c is

in a state with third term u, its sons are all in

states with third terms t or v, so that they all

have sum digits that can be shifted up to c for

addition. It can also be shown that under these

circumstances the second (carry digit) term of c ’s

state must be zero.]

3) A twig node cell ( in  state (l , 0 , t ) )  sh i f t s  its

sum digit ( 1) up whenever its father has third

term u. [It can be shown that this happens only

once.]

4) A cell in state (s,c,v) remains unchanged unless

its father is in a state with third term u (or

unless it is the root node) ; it then shifts s up

to its father (or down along the storage path , if

it is the root node), and changes to state (c,O ,u).

Thus u serves as a signal to a cell’s sons that they can shift

their sum digits up for addition (2-4). This insures that all

sons shift up at the same time , even though the information

may have arrived at the sons at different times (because their

subtrees have different heights). Note that the cell cannot

be in a u state until all its sons are ready (1). The v

symbol serves as a signal to a cell’s father that the cell is

ready to shift its sum digit up; at the same time, it serves

~~~~~~~ 
~~
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as a signal to the cell’s sons that the cell is not ready for

them to sh i f t  their digits up to it. When a cell shifts a

digit up to its father , its own state changes from v to u (4),

indicating to its sons that it is ready to accept their

digits again. Thus as long as digits remain to be shifted up

to a cell, its state alternates between u and v.

V It is not hard to prove* that a cell at height h ~ 1

in the tree remains in state (l,0,t) until step h+l , when it

changes to state (l,0,u). At the end of that step, all the

cell’ s sons ’ states have third terms t or v. [In general ,

whenever a cell’s third term is u, its sons’ third terms are

all t or v.3 Thus the cell now adds its sons ’ outputs; by in-

duction hypothesis, these are the least significant digits

(to base 4) of the numbers of nodes in the sons ’ subtrees,

so that the cell’s sum digit is now the least significant digit

of the sum of these sums , i.e., of the number of nodes in its

own subtree. When the cell’s father is ready , the cell outputs

this digit, changes its carry digit to a sum digit, and becomes

ready to accept further inputs from the sons. These can

immediately output to it the next least significant digits of

their subtrees’ numbers of nodes. The cell adds these to its

own sum digit, which yields the next least significant digit V

of its own subtree ’s number. This process continues until the

*For the details see A. Wu, Cellular Graph Automata , 2, Univer- 4
sity of Maryland Computer Science Center Technical Report 621 ,
December 1977, Section 1.3.3.
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sons have no further information to transmit. It can be

shown that this takes 3h+3 time steps: h+l until the

additions start, and two steps per digit (alternating between

u and v states) until they are finished . Thus the total time

. required for the sum to be computed for the entire tree is

about three times the distance from the root cell to the (twig)

cell, farthest from it, which is on the order of the diameter

of Z. It is easy for the root cell to know when this process

has been completed (e.g., use a signal that travels to a farthest

cell at half speed and then back to the root at full speed ;

when the return signal arrives, the elapsed time is essentially

3h.

It is tr ivial to modify this algorithm to count the

number of cells having a particular state, rather than all the

cells; or the number of occurrences of a particular local

pattern (a uniquely defined cell in each such occurrence first

goes into a special state, and these states are then counted).

*
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